题目内容

在△ABC中,角A,B,C的对边分别为a,b,c,已知4sin2
A+B
2
-cos2C=
7
2
,且a+b=5,c=
7

求:
(1)∠C;
(2)△ABC的面积.
(1)∵4sin2
A+B
2
-cos2C=
7
2

2[1-cos(A+B)]-2cos2C+1=
7
2

2+2cosC-2cos2C+1=
7
2

cos2C-cosC+
1
4
=0
,∴cosC=
1
2

∵0<C<π,∴C=
π
3

(2)由余弦定理得:cosC=
a2+b2-7
2ab
=
1
2
,∴ab=a2+b2-7
∴3ab=(a+b)2-7,即ab=6
S△ABC=
1
2
absinC=
3
3
2
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网