题目内容
(本小题满分12分)
等差数列的前项和为.
(Ⅰ)求数列的通项与前项和;
(Ⅱ)设,求证:数列中任意不同的三项都不可能成为等比数列.
【答案】
(Ⅰ)
(Ⅱ)数列中任意不同的三项都不可能成为等比数列
【解析】解:(Ⅰ)由已知得,,
故.
(Ⅱ)由(Ⅰ)得.
假设数列中存在三项(互不相等)成等比数列,则.
即.
,
.
与矛盾.
所以数列中任意不同的三项都不可能成等比数列.
练习册系列答案
相关题目