题目内容

如果|x|≤
π
4
,那么函数f(x)=cos2x+sinx的最小值是
1-
2
2
1-
2
2
分析:利用三角函数的平方关系式,化简函数的表达式,结合x的范围,求出sinx的范围,然后求出函数的最小值.
解答:解:函数f(x)=cos2x+sinx=1-sin2x+sinx=-(sinx-
1
2
2+
5
4

因为|x|≤
π
4
,所以sinx∈[-
2
2
2
2
]

当sinx=-
2
2
时,函数取得最小值:
1-
2
2

故答案为:
1-
2
2
点评:本题是中档题,考查三角函数的化简求值,考查计算能力转化思想,常考题型.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网