搜索
题目内容
已知离散型随机变量X的分布列如表,若E(X)=0,D(X)=1,则a=________,b=________.
X
-1
0
1
2
P
a
b
c
试题答案
相关练习册答案
由题意知
解得
练习册系列答案
单元月考卷系列答案
小升初系统总复习指导与检测系列答案
口算达标天天练系列答案
小学毕业升学复习必做的18套试卷系列答案
小桔豆阅读与作文高效训练系列答案
总复习系统强化训练系列答案
小考宝典系列答案
高中新课程评价与检测系列答案
呼和浩特市预测卷系列答案
中考指南系列答案
相关题目
某选修课的考试按A级、B级依次进行,只有当A级成绩合格时,才可继续参加B级的考试.已知每级考试允许有一次补考机会,两个级别的成绩均合格方可获得该选修课的合格证书.现某人参加这个选修课的考试,他A级考试成绩合格的概率为
,B级考试合格的概率为
.假设各级考试成绩合格与否均互不影响.
(1)求他不需要补考就可获得该选修课的合格证书的概率;
(2)在这个考试过程中,假设他不放弃所有的考试机会,记他参加考试的次数为
,求
的数学期望E
.
为了解甲、乙两个快递公司的工作状况,假设同一个公司快递员的工作状况基本相同,现从甲、乙两公司各随机抽取一名快递员,并从两人某月(30天)的快递件数记录结果中随机抽取10天的数据,制表如下:
甲公司某员工
A
乙公司某员工
B
3
9
6
5
8
3
3
2
3
4
6
6
6
7
7
0
1
4
4
2
2
2
每名快递员完成一件货物投递可获得的劳务费情况如下:
甲公司规定每件4.5元;乙公司规定每天35件以内(含35件)的部分每件4元,超出35件的部分每件7元.
(1)根据表中数据写出甲公司员工
A
在这10天投递的快递件数的平均数和众数;
(2)为了解乙公司员工
B
的每天所得劳务费的情况,从这10天中随机抽取1天,他所得的劳务费记为
(单位:元),求
的分布列和数学期望;
(3)根据表中数据估算两公司的每位员工在该月所得的劳务费.
某游戏的得分为1,2,3,4,5,随机变量
表示小白玩游戏的得分.若
=4.2,则小白得5分的概率至少为
.
若X是离散型随机变量,P(X=x
1
)=
,P(X=x
2
)=
,且x
1
<x
2
,又已知E(X)=
,V(X)=
,则x
1
+x
2
的值为________.
设15000件产品中有1000件次品,从中抽取150件进行检查,则查得次品数的数学期望为________.
某项游戏活动的奖励分成一、二、三等奖且相应获奖概率是以
a
1
为首项,公比为2的等比数列,相应资金是以700元为首项,公差为-140元的等差数列,则参与该游戏获得资金的期望为________元.
多选题是标准化考试的一种题型,一般是从A、B、C、D四个选项中选出所有正确的答案.在一次考试中有5道多选题,某同学一道都不会,他随机的猜测,则他答对题数的期望值为
.
为普及高中生安全逃生知识与安全防护能力,某学校高一年级举办了高中生安全知识与安全逃生能力竞赛. 该竞赛分为预赛和决赛两个阶段,预赛为笔试,决赛为技能比赛.先将所有参赛选手参加笔试的成绩(得分均为整数,满分为
分)进行统计,制成如下频率分布表.
分数(分数段)
频数(人数)
频率
[60,70)
[70,80)
[80,90)
[90,100)
合 计
(Ⅰ)求出上表中的
的值;
(Ⅱ)按规定,预赛成绩不低于
分的选手参加决赛,参加决赛的选手按照抽签方式决定出场顺序.已知高一·二班有甲、乙两名同学取得决赛资格.
①求决赛出场的顺序中,甲不在第一位、乙不在最后一位的概率;
②记高一·二班在决赛中进入前三名的人数为
,求
的分布列和数学期望.
关 闭
试题分类
高中
数学
英语
物理
化学
生物
地理
初中
数学
英语
物理
化学
生物
地理
小学
数学
英语
其他
阅读理解答案
已回答习题
未回答习题
题目汇总
试卷汇总