题目内容
(本小题满分12分)
在正方体ABCD-A1B1C1D1中,E、F为棱AD、AB的中点.
(1)求证:EF∥平面CB1D1;
(2)求证:平面CAA1C1⊥平面CB1D1
(1)连结BD,, EF∥平面CB1D(2)AA1⊥平面A1B1C1D1, AA1⊥B1D1,又A1C1⊥B1D1 B1D1⊥平面CAA1C1平面CAA1C1⊥平面CB1D1
解析试题分析:(1)证明:连结BD.
在长方体中,对角线.
又 E、F为棱AD、AB的中点,
.
.
又B1D1平面,平面,
EF∥平面CB1D1.
(2) 在长方体中,AA1⊥平面A1B1C1D1,而B1D1平面A1B1C1D1,
AA1⊥B1D1.
又在正方形A1B1C1D1中,A1C1⊥B1D1,
B1D1⊥平面CAA1C1.
又 B1D1平面CB1D1,
平面CAA1C1⊥平面CB1D1.
考点:线面平行垂直的判定
点评:线面平行的判定:需在平面内找一直线与面外直线平行,本题充分借助出现的中点可考虑中位线的平行关系;面面垂直的判定:要证两面垂直需在其中一个平面内找到另外一面的垂线,即将证明面面垂直问题转化为证明线面垂直
练习册系列答案
相关题目