ÌâÄ¿ÄÚÈÝ
¸ø³öÒÔÏÂÅжϣº
£¨1£©b=0ÊǺ¯Êýf£¨x£©=ax2+bx+cΪżº¯ÊýµÄ³äÒªÌõ¼þ£»
£¨2£©ÍÖÔ²
+
=1ÖУ¬ÒԵ㣨1£¬1£©ÎªÖеãµÄÏÒËùÔÚÖ±Ïß·½³ÌΪx+2y-3=0£»
£¨3£©»Ø¹éÖ±Ïß
=
x+
±Ø¹ýµã(
£¬
)£»
£¨4£©Èçͼ£¬ÔÚËÄÃæÌåABCDÖУ¬ÉèEΪ¡÷BCDµÄÖØÐÄ£¬Ôò
=
+
+
£»
£¨5£©Ë«ÇúÏß
-
=1(a£¾0£¬b£¾0)µÄÁ½½¹µãΪF1£¬F2£¬PΪÓÒÖ§ÊÇÒìÓÚÓÒ¶¥µãµÄÈÎÒ»µã£¬¡÷PF1F2µÄÄÚÇÐÔ²Ô²ÐÄΪT£¬ÔòµãTµÄºá×ø±êΪa£®ÆäÖÐÕýÈ·ÃüÌâµÄÐòºÅÊÇ______£®
£¨1£©b=0ÊǺ¯Êýf£¨x£©=ax2+bx+cΪżº¯ÊýµÄ³äÒªÌõ¼þ£»
£¨2£©ÍÖÔ²
x2 |
4 |
y2 |
3 |
£¨3£©»Ø¹éÖ±Ïß
y |
b |
a |
. |
x |
. |
y |
£¨4£©Èçͼ£¬ÔÚËÄÃæÌåABCDÖУ¬ÉèEΪ¡÷BCDµÄÖØÐÄ£¬Ôò
AE |
AB |
1 |
2 |
AC |
2 |
3 |
AD |
£¨5£©Ë«ÇúÏß
x2 |
a2 |
y2 |
b2 |
£¨1£©º¯Êýf£¨x£©=ax2+bx+cÊÇżº¯Êý£¬¿ÉµÃf£¨-x£©=f£¨x£©£¬µÃa£¨-x£©2-bx+c=ax2+bx+c£¬¡à-bx=bx£¬¡àb=0£»µ±b=0ʱ£¬f£¨x£©=ax2+c£¬Âú×ãf£¨-x£©=f£¨x£©£¬ÊÇżº¯Êý£¬ËùÒÔb=0ÊǺ¯Êýf£¨x£©=ax2+bx+cΪżº¯ÊýµÄ³äÒªÌõ¼þ£¬¹Ê£¨1£©ÕýÈ·£»
£¨2£©ÉèÒÔA£¨1£¬1£©ÎªÖеãÍÖÔ²µÄÏÒÓëÍÖÔ²½»ÓÚE£¨x1£¬y1£©£¬F£¨x2£¬y2£©£¬¡ßA£¨1£¬1£©ÎªEFÖе㣬¡àx1+x2=2£¬y1+y2=2£¬°ÑE£¨x1£¬y1£©£¬F£¨x2£¬y2£©·Ö±ð´úÈëÍÖÔ²
+
=1£¬µÃ
£¬¡à3£¨x1+x2£©£¨x1-x2£©+4£¨y1+y2£©£¨y1-y2£©=0£¬¡à6£¨x1-x2£©+8£¨y1-y2£©=0£¬¡àk=
=-
£¬¡àÒÔA£¨1£¬1£©ÎªÖеãÍÖÔ²µÄÏÒËùÔÚµÄÖ±Ïß·½³ÌΪ3x+4y-7=0£¬¹Ê£¨2£©´íÎó£»
£¨3£©»Ø¹éÖ±Ïß
=
x+
±Ø¹ýµã(
£¬
)£¬¹ÊÕýÈ·£»
£¨4£©ÔÚËÄÃæÌåABCDÖУ¬ÉèEΪ¡÷BCDµÄÖØÐÄ£¬Ôò
=
+
=
+
•
(
+
)=
(
+
+
)£¬¹Ê£¨4£©²»ÕýÈ·£»
£¨5£©Éè¡÷PF1F2µÄÄÚÇÐÔ²·Ö±ðÓëPF1¡¢PF2ÇÐÓÚµãA¡¢B£¬ÓëF1F2ÇÐÓÚµãM£¬Ôò|PA|=|PB|£¬|F1A|=|F1M|£¬|F2B|=|F2M|£®ÓÖµãPÔÚË«ÇúÏßÓÒÖ§ÉÏ£¬¡à|PF1|-|PF2|=2a£¬¼´£¨|PA|+|F1A|£©-£¨|PB|+|F2B|£©=2a£¬¡à|F1M|-|F2M|=2a£¬¶ø|F1M|+|F2M|=2c£¬ÉèMµã×ø±êΪ£¨x£¬0£©£¬¡ß|F1M|-|F2M|=2a£¬¡à£¨x+c£©-£¨c-x£©=2a£¬½âµÃx=a£¬¹Ê£¨5£©ÕýÈ·£®
¹Ê´ð°¸Îª£º£¨1£©£¨3£©£¨5£©£®
£¨2£©ÉèÒÔA£¨1£¬1£©ÎªÖеãÍÖÔ²µÄÏÒÓëÍÖÔ²½»ÓÚE£¨x1£¬y1£©£¬F£¨x2£¬y2£©£¬¡ßA£¨1£¬1£©ÎªEFÖе㣬¡àx1+x2=2£¬y1+y2=2£¬°ÑE£¨x1£¬y1£©£¬F£¨x2£¬y2£©·Ö±ð´úÈëÍÖÔ²
x2 |
4 |
y2 |
3 |
|
y1-y2 |
x1-x2 |
3 |
4 |
£¨3£©»Ø¹éÖ±Ïß
y |
b |
a |
. |
x |
. |
y |
£¨4£©ÔÚËÄÃæÌåABCDÖУ¬ÉèEΪ¡÷BCDµÄÖØÐÄ£¬Ôò
AE |
AB |
BE |
AB |
2 |
3 |
1 |
2 |
BC |
BD |
1 |
3 |
AB |
AC |
AD |
£¨5£©Éè¡÷PF1F2µÄÄÚÇÐÔ²·Ö±ðÓëPF1¡¢PF2ÇÐÓÚµãA¡¢B£¬ÓëF1F2ÇÐÓÚµãM£¬Ôò|PA|=|PB|£¬|F1A|=|F1M|£¬|F2B|=|F2M|£®ÓÖµãPÔÚË«ÇúÏßÓÒÖ§ÉÏ£¬¡à|PF1|-|PF2|=2a£¬¼´£¨|PA|+|F1A|£©-£¨|PB|+|F2B|£©=2a£¬¡à|F1M|-|F2M|=2a£¬¶ø|F1M|+|F2M|=2c£¬ÉèMµã×ø±êΪ£¨x£¬0£©£¬¡ß|F1M|-|F2M|=2a£¬¡à£¨x+c£©-£¨c-x£©=2a£¬½âµÃx=a£¬¹Ê£¨5£©ÕýÈ·£®
¹Ê´ð°¸Îª£º£¨1£©£¨3£©£¨5£©£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿