ÌâÄ¿ÄÚÈÝ

¸ø³öÒÔÏÂÅжϣº
£¨1£©b=0ÊǺ¯Êýf£¨x£©=ax2+bx+cΪżº¯ÊýµÄ³äÒªÌõ¼þ£»
£¨2£©ÍÖÔ²
x2
4
+
y2
3
=1
ÖУ¬ÒԵ㣨1£¬1£©ÎªÖеãµÄÏÒËùÔÚÖ±Ïß·½³ÌΪx+2y-3=0£»
£¨3£©»Ø¹éÖ±Ïß
y
=
b
x+
a
±Ø¹ýµã(
.
x
£¬
.
y
)
£»
£¨4£©Èçͼ£¬ÔÚËÄÃæÌåABCDÖУ¬ÉèEΪ¡÷BCDµÄÖØÐÄ£¬Ôò
AE
=
AB
+
1
2
AC
+
2
3
AD
£»
£¨5£©Ë«ÇúÏß
x2
a2
-
y2
b2
=1(a£¾0£¬b£¾0)
µÄÁ½½¹µãΪF1£¬F2£¬PΪÓÒÖ§ÊÇÒìÓÚÓÒ¶¥µãµÄÈÎÒ»µã£¬¡÷PF1F2µÄÄÚÇÐÔ²Ô²ÐÄΪT£¬ÔòµãTµÄºá×ø±êΪa£®ÆäÖÐÕýÈ·ÃüÌâµÄÐòºÅÊÇ______£®
£¨1£©º¯Êýf£¨x£©=ax2+bx+cÊÇżº¯Êý£¬¿ÉµÃf£¨-x£©=f£¨x£©£¬µÃa£¨-x£©2-bx+c=ax2+bx+c£¬¡à-bx=bx£¬¡àb=0£»µ±b=0ʱ£¬f£¨x£©=ax2+c£¬Âú×ãf£¨-x£©=f£¨x£©£¬ÊÇżº¯Êý£¬ËùÒÔb=0ÊǺ¯Êýf£¨x£©=ax2+bx+cΪżº¯ÊýµÄ³äÒªÌõ¼þ£¬¹Ê£¨1£©ÕýÈ·£»
£¨2£©ÉèÒÔA£¨1£¬1£©ÎªÖеãÍÖÔ²µÄÏÒÓëÍÖÔ²½»ÓÚE£¨x1£¬y1£©£¬F£¨x2£¬y2£©£¬¡ßA£¨1£¬1£©ÎªEFÖе㣬¡àx1+x2=2£¬y1+y2=2£¬°ÑE£¨x1£¬y1£©£¬F£¨x2£¬y2£©·Ö±ð´úÈëÍÖÔ²
x2
4
+
y2
3
=1
£¬µÃ
x12
4
+
y12
3
=1
x22
4
+
y22
3
=1
£¬¡à3£¨x1+x2£©£¨x1-x2£©+4£¨y1+y2£©£¨y1-y2£©=0£¬¡à6£¨x1-x2£©+8£¨y1-y2£©=0£¬¡àk=
y1-y2
x1-x2
=-
3
4
£¬¡àÒÔA£¨1£¬1£©ÎªÖеãÍÖÔ²µÄÏÒËùÔÚµÄÖ±Ïß·½³ÌΪ3x+4y-7=0£¬¹Ê£¨2£©´íÎó£»
£¨3£©»Ø¹éÖ±Ïß
y
=
b
x+
a
±Ø¹ýµã(
.
x
£¬
.
y
)
£¬¹ÊÕýÈ·£»
£¨4£©ÔÚËÄÃæÌåABCDÖУ¬ÉèEΪ¡÷BCDµÄÖØÐÄ£¬Ôò
AE
=
AB
+
BE
=
AB
+
2
3
1
2
(
BC
+
BD
)
=
1
3
(
AB
+
AC
+
AD
)
£¬¹Ê£¨4£©²»ÕýÈ·£»
£¨5£©Éè¡÷PF1F2µÄÄÚÇÐÔ²·Ö±ðÓëPF1¡¢PF2ÇÐÓÚµãA¡¢B£¬ÓëF1F2ÇÐÓÚµãM£¬Ôò|PA|=|PB|£¬|F1A|=|F1M|£¬|F2B|=|F2M|£®ÓÖµãPÔÚË«ÇúÏßÓÒÖ§ÉÏ£¬¡à|PF1|-|PF2|=2a£¬¼´£¨|PA|+|F1A|£©-£¨|PB|+|F2B|£©=2a£¬¡à|F1M|-|F2M|=2a£¬¶ø|F1M|+|F2M|=2c£¬ÉèMµã×ø±êΪ£¨x£¬0£©£¬¡ß|F1M|-|F2M|=2a£¬¡à£¨x+c£©-£¨c-x£©=2a£¬½âµÃx=a£¬¹Ê£¨5£©ÕýÈ·£®
¹Ê´ð°¸Îª£º£¨1£©£¨3£©£¨5£©£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿

Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com

¾«Ó¢¼Ò½ÌÍø