题目内容
设函数f(x)=
+
(x>0),数列{an}满足a1=1,an=f(
),n∈N*且n≥2.
(1)求数列{an}的通项公式;
(2)对n∈N*,设Sn=
+
+
+…+
,求证:Sn<
.
2 |
3 |
1 |
x |
1 |
an-1 |
(1)求数列{an}的通项公式;
(2)对n∈N*,设Sn=
1 |
a1a2 |
1 |
a2a3 |
1 |
a3a4 |
1 |
anan+1 |
3 |
2 |
分析:(1)根据函数f(x)=
+
(x>0),an=f(
),n∈N*,n≥2,可得an-an-1=
,从而数列{an}是等差数列,由此可求数列{an}的通项公式;
(2)裂项可得
=
(
-
),求出Sn,即可证得结论.
2 |
3 |
1 |
x |
1 |
an-1 |
2 |
3 |
(2)裂项可得
1 |
anan+1 |
9 |
2 |
1 |
2n+1 |
1 |
2n+3 |
解答:(1)解:∵函数f(x)=
+
(x>0),an=f(
),n∈N*,n≥2,
∴an-an-1=
∴数列{an}是等差数列
∵a1=1,
∴an=
(2)证明:∵
=
(
-
)
∴Sn=
+
+
+…+
=
(
-
+
-
+…+
-
)
=
(
-
)<
2 |
3 |
1 |
x |
1 |
an-1 |
∴an-an-1=
2 |
3 |
∴数列{an}是等差数列
∵a1=1,
∴an=
2n+1 |
3 |
(2)证明:∵
1 |
anan+1 |
9 |
2 |
1 |
2n+1 |
1 |
2n+3 |
∴Sn=
1 |
a1a2 |
1 |
a2a3 |
1 |
a3a4 |
1 |
anan+1 |
9 |
2 |
1 |
3 |
1 |
5 |
1 |
5 |
1 |
7 |
1 |
2n+1 |
1 |
2n+3 |
=
9 |
2 |
1 |
3 |
1 |
2n+3 |
3 |
2 |
点评:本题考查数列与函数的结合,考查数列的通项,考查裂项法求和,考查不等式的证明,确定数列的通项是关键.
练习册系列答案
相关题目