题目内容
已知函数
,其中x∈(o,+∞).
(I)在给定的坐标系中,画出函数f(x)的图象;
(II)设0<a<b,且f(a)=f(b),证明:ab>1.
对函数进行分析知f(x)在(0,1]上是减函数,在(1,+∞)上是增函数.
其图象为:
(II):由题意f(a)=f(b)?|1-
故ab-
故
分析:(I)去绝对值号将函数变为分段函数,即f(x)=
(II)当0<a<b,且f(a)=f(b)时,由f(a)=f(b)?|1-
点评:本题考点是函数的图象、绝对值不等式的解法,考查利用绝对值不等式这一工具证明不等式,二者的结合点相当隐蔽,本题需要对题设条件进行转化证明,请注意体会这里的技巧.
练习册系列答案
相关题目