题目内容
已知A(x1,f(x1)),B(x2,f(x2))是函数f(x)=2sin(wx+j)(w>0,<j<0)图象上的任意两点,且角j的终边经过点P(l,-),若|f(x1)-f(x2)|=4时,|x1-x2|的最小值为.
(1)求函数f(x)的解析式;(2)求函数f(x)的单调递增区间;(3)当x∈时,不等式mf(x)+2m≥f(x)恒成立,求实数m的取值范围.
(1)f(x)=2sin(3x-);(2)[+,+], k∈Z;(3)[,+¥).
解析试题分析:(1)由角j的终边经过点P(l,-)及<j<0可求得j的值,又|f(x1)-f(x2)|=4时,|x1-x2|的最小值为可最小正周期为,从而可求出w的值,即可求出其表达式;(2)由复合函数的知识可令3x-=u,只需令+2kp≤u≤+2kp,解出x的范围即是函数的单调递增区间;(3)不等式mf(x)+2m≥f(x)恒成立要求m的范围,只需用分离变量的作法,等价于,而x∈,可求出f(x)的范围,从而可求出的最大值,则m恒大于或等于其最大值.
试题解析:(1)角j的终边经过点P(1,-),tanj=-,∵<j<0,∴j=-.由|f(x1)-f(x2)|=4时,|x1-x2|的最小值为,得T=,即=,∴w=3,∴f(x)=2sin(3x-)
(2)令+2kp≤3x-≤+2kp,得+≤x≤+,k∈Z
∴函数f(x)的单调递增区间为[+,+],k∈Z.
(3)当x∈时,-≤f(x)≤1,所以2+f(x)>0,mf(x)+2m≥f(x)等价于.由-≤f(x)≤1,得的最大值为,所以实数m的取值范围是[,+¥).
考点:三角函数的定义,三角函数的周期公式,正弦函数的单调区间,恒成立问题,分离变量法,转化思想.
练习册系列答案
相关题目