ÌâÄ¿ÄÚÈÝ

ÔÚÊýÁÐ{an}ºÍ{bn}ÖУ¬ÒÑÖªan=an£¬bn=(a+1)n+b£¬n=l£¬2£¬3£¬¡­£¬ÆäÖÐa¡Ý2ÇÒa¡ÊN*£¬b¡ÊR£®
(¢ñ)Èôa1=b1£¬a2£¼b2£¬ÇóÊýÁÐ{bn}µÄÇ°nÏîºÍ£»
(¢ò)Ö¤Ã÷£ºµ±a=2£¬b=ʱ£¬ÊýÁÐ{bn}ÖеÄÈÎÒâÈýÏ²»Äܹ¹³ÉµÈ±ÈÊýÁУ»
(¢ó)É輯ºÏA={a1£¬a2£¬a3£¬¡­}£¬B={b1£¬b2£¬b3£¬¡­}£®ÊÔÎÊÔÚÇø¼ä[1£¬a]ÉÏÊÇ·ñ´æÔÚʵÊýbʹµÃC=A¡ÉB¡Ù£¬Èô´æÔÚ£¬Çó³öbµÄÒ»ÇпÉÄܵÄÈ¡Öµ¼°ÏàÓ¦µÄ¼¯ºÏC£»Èô²»´æÔÚ£¬ËµÃ÷ÀíÓÉ¡£
½â£º(¢ñ)ÒòΪa1=b1£¬ËùÒÔa=a+1+b£¬b=-1£¬
ÓÉa2£¼b2£¬µÃa2-2a-1£¼0£¬ ËùÒÔ1-£¼a£¼1+£¬
ÒòΪa¡Ý2ÇÒa¡ÊN*£¬ËùÒÔa=2£¬ËùÒÔbn=3n-1£¬{bn}ÊǵȲîÊýÁУ¬
ËùÒÔÊýÁÐ{bn}µÄÇ°nÏîºÍ¡£
(¢ò)ÓÉÒÑÖªbn=3n+£¬
¼ÙÉè3m+£¬3n+£¬3t+³ÉµÈ±ÈÊýÁУ¬ÆäÖÐm£¬n£¬t¡ÊN*£¬Çұ˴˲»µÈ£¬
Ôò£¨3m+£©2=£¨3m+£©£¨3t+£©£¬
ËùÒÔ9n2+6n+2=9mt+3m+3t+2£¬
ËùÒÔ3n2-3mt=(m+t-2n)£¬
Èôm+t-2n=0£¬Ôò3n2-3mt=0£¬¿ÉµÃm=t£¬Óëm¡Ùtì¶Ü£»
Èôm+l-2n¡Ù0£¬Ôòm+t-2nΪ·ÇÁãÕûÊý£¬(m+t-2n)ΪÎÞÀíÊý£¬
ËùÒÔ3n2-3mtΪÎÞÀíÊý£¬Óë3n2-3mtÊÇÕûÊýì¶Ü£¬
ËùÒÔÊýÁÐ{bn}ÖеÄÈÎÒâÈýÏ²»Äܹ¹³ÉµÈ±ÈÊýÁС£
(¢ó)Éè´æÔÚʵÊýb¡Ê[1£¬a]£¬Ê¹C=A¡ÉB¡Ù£¬
Éèm0¡ÊC£¬Ôòm0¡ÊA£¬ÇÒm0¡ÊB£¬
Éèm0=at(t¡ÊN*)£¬m0=£¨a+1£©s+b(s¡ÊN*)£¬
Ôòat=£¨a+1£©s+b£¬ËùÒÔ£¬
ÒòΪa£¬t£¬s¡ÊN*£¬ÇÒa£¾2£¬ËùÒÔat-bÄܱ»a+1Õû³ý£¬
(1)µ±t=1ʱ£¬ÒòΪb¡Ê[1£¬a]£¬a-b¡Ê[0£¬a-1]£¬ËùÒÔ£¬£»
(2)µ±t=2n(n¡ÊN*)ʱ£¬
£¬
ÓÉÓÚb¡Ê[1£¬a]£¬b-1¡Ê[0£¬a-1]£¬0¡Üb-1£¼a+1£¬
ËùÒÔ£¬µ±ÇÒ½öµ±b=1ʱ£¬at-bÄܱ»a+1Õû³ý£»
(3)µ±t=2n+1(n¡ÊN*)ʱ£¬

£¬
ÓÉÓÚb¡Ê[1£¬a]£¬b+1¡Ê[2£¬a+1]£¬
ËùÒÔ£¬µ±ÇÒ½öµ±b+1=a+1£¬¼´b=aʱ£¬at-bÄܱ»a+1Õû³ý£»
×ÛÉÏ£¬ÔÚÇø¼ä[1£¬a]ÉÏ´æÔÚʵÊýb£¬Ê¹C=A¡ÉB¡Ù³ÉÁ¢£¬
ÇÒµ±b=1ʱ£¬C={y|y=a2n£¬n¡ÊN*}£»
µ±b=aʱ£¬c={y|y=a2n+1£¬n¡ÊN*}¡£
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿

Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com

¾«Ó¢¼Ò½ÌÍø