题目内容
函数f(x)=axn(1-x)2在区间(0.1)上的图象如图所示,则n可能是

- A.1
- B.2
- C.3
- D.4
A
分析:先从图象上得出原函数的最值(极值)点小于0.5,再把答案分别代入验证法看哪个选项符合要求来找答案即可.
解答:由于本题是选择题,可以用代入法来作,
由图得,原函数的最值(极值)点小于0.5.
当n=1时,f(x)=ax(1-x)2=a(x3-2x2+x),所以f'(x)=a(3x-1)(x-1),令f'(x)=0?x=
,x=1,即函数在x=
处有最值,故A对;
当n=2时,f(x)=ax2(1-x)2=a(x4-2x3+x2),有f'(x)=a(4x3-6x2+2x)=2ax(2x-1)(x-1),令f'(x)=0?x=0,x=
,x=1,即函数在x=
处有最值,故B错;
当n=3时,f(x)=ax3(1-x)2,有f'(x)=ax2(x-1)(5x-3),令f'(x)=0,?x=0,x=1,x=
,即函数在x=
处有最值,故C错.
当n=4时,f(x)=ax4(1-x)2,有f'(x)=2x3(3x-2)(x-1),令f'(x)=0,?x=0,x=1,x=
,即函数在x=
处有最值,故D错
故选 A.
点评:本题主要考查函数的最值(极值)点与导函数之间的关系.在利用导函数来研究函数的极值时,分三步①求导函数,②求导函数为0的根,③判断根左右两侧的符号,若左正右负,原函数取极大值;若左负右正,原函数取极小值.本本题考查利用极值求对应变量的值.可导函数的极值点一定是导数为0的点,但导数为0的点不一定是极值点.
分析:先从图象上得出原函数的最值(极值)点小于0.5,再把答案分别代入验证法看哪个选项符合要求来找答案即可.
解答:由于本题是选择题,可以用代入法来作,
由图得,原函数的最值(极值)点小于0.5.
当n=1时,f(x)=ax(1-x)2=a(x3-2x2+x),所以f'(x)=a(3x-1)(x-1),令f'(x)=0?x=
当n=2时,f(x)=ax2(1-x)2=a(x4-2x3+x2),有f'(x)=a(4x3-6x2+2x)=2ax(2x-1)(x-1),令f'(x)=0?x=0,x=
当n=3时,f(x)=ax3(1-x)2,有f'(x)=ax2(x-1)(5x-3),令f'(x)=0,?x=0,x=1,x=
当n=4时,f(x)=ax4(1-x)2,有f'(x)=2x3(3x-2)(x-1),令f'(x)=0,?x=0,x=1,x=
故选 A.
点评:本题主要考查函数的最值(极值)点与导函数之间的关系.在利用导函数来研究函数的极值时,分三步①求导函数,②求导函数为0的根,③判断根左右两侧的符号,若左正右负,原函数取极大值;若左负右正,原函数取极小值.本本题考查利用极值求对应变量的值.可导函数的极值点一定是导数为0的点,但导数为0的点不一定是极值点.
练习册系列答案
相关题目
| A、1 | B、2 | C、3 | D、4 |