题目内容

(理)已知:fn(x)=a1x+a2x2+…+anxn,fn(-1)=(-1)n·n,n=1,2,3,….

(1)求a1、a2、a3;

(2)求数列{an}的通项公式;

(3)求证:fn()<1.

(文)设函数f(x)=2ax3-(6a+3)x2+12x(a∈R),

(1)当a=1时,求函数f(x)的极大值和极小值;

(2)若函数f(x)在区间(-∞,1)上是增函数,求实数a的取值范围.

答案:(理)解:(1)由已知f1(-1)=-a1=-1,所以a1=1.

f2(-1)=-a1+a2=2,所以a2=3.f3(-1)=-a1+a2-a3=-3,所以a3=5.

(2)∵(-1)n+1·an+1=fn+1(-1)-fn(-1)=(-1)n+1·(n+1)-(-1)n·n,∴an+1=(n+1)+n,

即an+1=2n+1.所以对于任意的n=1,2,3,…,an=2n-1.

(3)fn(x)=x+3x2+5x3+…+(2n-1)xn,∴fn()=+3()2+5()3+…+(2n-1)()n.①

·fn()=()2+3()3+5()4+…+(2n-1)()n+1.②

①-②,得fn()=+2()2+2()3+…+2()n-(2n-1)()n+1

-(2n-1)()n+1.∴fn()=1-,

又n=1,2,3,…,故fn()<1.

(文)解:(1)当a=1时,f(x)=2x3-9x2+12x.

∴f′(x)=6x2-18x+12=6(x2-3x+2).

令f′(x)=0,得x1=1,x2=2.

列表

x

(-∞,1)

1

(1,2)

2

(2,+∞)

f′(x)

+

0

-

0

+

f(x)

*?

极大值

极小值

∴f(x)的极大值为f(1)=5,f(x)的极小值为f(2)=4.

(2)f′(x)=6ax2-(12a+6)x+12=6[ax2-(2a+1)x+2]=6(ax-1)(x-2).

①若a=0,则f(x)=-3x2+12x,此函数在(-∞,2)上单调递增,满足题意.

②若a≠0,则令f′(x)=0,得x1=2,x2=,由已知,f(x)在区间(-∞,1)上是增函数,即当x<1时,f′(x)≥0恒成立,

若a>0,则只需≥1,即0<a≤1,

若a<0,则<0,当x<时,f′(x)<0,则f(x)在区间(-∞,1)上不是增函数.综上所述,实数a的取值范围是[0,1].


练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网