题目内容
【题目】如图所示,AF、DE分别是⊙O、⊙O1的直径,AD与两圆所在的平面均垂直,AD=8,BC是⊙O的直径,AB=AC=6,OE∥AD
(1)求二面角B﹣AD﹣F的大小;
(2)求直线BD与EF所成的角的余弦值.
【答案】
(1)解:∵AD与两圆所在的平面均垂直,
∴AD⊥AB,AD⊥AF,
∴∠BAF是二面角B﹣AD﹣F的平面角,
∵AB=AC,∠BAC=90°,O是BC的中点,
∴∠BAF= ∠BAC=45°.
即二面角 QUOTE 的大小为45°
(2)解:∵OA=OB,∠BAO=45°,∴∠AOB=90°.
以O为原点,以OB,OF,OE所在直线为坐标轴,建立如图所示的空间直角坐标系O﹣xyz,
则O(0,0,0),A(0,﹣3 ,0),B(3 ,0,0),D(0,﹣3 ,8),E(0,0,8),F(0,3 ,0),
∵ =(﹣3 ,﹣3 ,8), =(0,﹣3 ,8),
∴ =0+18+64=82.| |=10,| |= .
∴cos< >= = = .
故直线BD与EF所成的角为arccos .
【解析】(1)由AD⊥平面⊙O可得AD⊥AB,AD⊥AF,故∠BAF即为所求角的平面角;(2)以O为原点建立空间直角坐标系,求出 , 的坐标,求出cos< , >即可.
【考点精析】解答此题的关键在于理解空间角的异面直线所成的角的相关知识,掌握已知为两异面直线,A,C与B,D分别是上的任意两点,所成的角为,则.
练习册系列答案
相关题目