题目内容
17、如图,PA,PB是⊙O的切线,点A,B为切点,AC是⊙O的直径,∠ACB=70°.求∠P的度数.
分析:根据PA,PB分别是⊙O的切线得到PA⊥OA,PB⊥OB,在四边形AOBP中根据内角和定理,就可以求出∠P的度数.
解答:解:连接OB,
∴∠AOB=2∠ACB,
∵∠ACB=70°,
∴∠AOB=140°;
∵PA,PB分别是⊙O的切线,
∴PA⊥OA,PB⊥OB,
即∠PAO=∠PBO=90°,
∵四边形AOBP的内角和为360°,
∴∠P=360°-(90°+90°+140°)=40°.
∴∠AOB=2∠ACB,
∵∠ACB=70°,
∴∠AOB=140°;
∵PA,PB分别是⊙O的切线,
∴PA⊥OA,PB⊥OB,
即∠PAO=∠PBO=90°,
∵四边形AOBP的内角和为360°,
∴∠P=360°-(90°+90°+140°)=40°.
点评:本题主要考查了切线的性质,主要是考查了切线垂直于过切点的半径这个性质.属于基础题.
练习册系列答案
相关题目