题目内容

点Q在x轴上,若存在过Q的直线交函数y=2x的图象于A,B两点,满足
QA
=
AB
,则称点Q为“Ω点”,那么下列结论中正确的是(  )
分析:设Q(a,0),A(x12x1)B(x22x2),由
QA
=
AB
可得x2=2x1-a,2x2=2×2x1,得x1=a+1,x2=a+2,进而得到对于x轴上任意Q(a,0)点,总有A(a+1,2a+1),B(a+2,2a+2)满足题设要求.
解答:解:设Q(a,0),A(x12x1)B(x22x2)
所以
QA
=(x1-a,2x1)
AB
= (x2-x12x2-2x1)

因为
QA
=
AB

所以x2=2x1-a,2x2=2×2x1,得x1=a+1,x2=a+2.
即对于x轴上任意Q(a,0)点,总有A(a+1,2a+1),B(a+2,2a+2)满足题设要求.
故选B.
点评:解决此类问题的关键是熟练掌握向量的有关运算与指数函数的性质,考查学生的理解并且运用新知识的能力,此题属于中档题,属于新定义题时高考命题的热点之一.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网