ÌâÄ¿ÄÚÈÝ
¼×ÒÒ¶þÈËͬʱ´ÓAµØ¸ÏÍùBµØ£¬¼×ÏÈÆï×ÔÐгµµ½Öеãºó¸ÄΪÅܲ½£¬¶øÒÒÔòÊÇÏÈÅܲ½£¬µ½Öеãºó¸ÄΪÆï×ÔÐгµ£¬×îºó¶þÈËͬʱµ½´ïBµØ£¬¼×ÒÒÁ½ÈËÆï×ÔÐгµËٶȶ¼´óÓÚ¸÷×ÔÅܲ½Ëٶȣ¬ÓÖÖª¼×Æï×ÔÐгµ±ÈÒÒÆï×ÔÐгµµÄËٶȿ졣ÈôijÈËÀ뿪AµØµÄ¾àÀëSÓëËùÓÃʱ¼ätµÄº¯ÊýÓÃͼÏó±íʾÈçÏ£¬ÔòÔÚÏÂÁиø³öµÄËĸöº¯ÊýÖÐ
¼×ÒÒ¶þÈ˵ÄͼÏóÖ»¿ÉÄÜ £¨ £©
A£®¼×ÊÇͼ¢Ù£¬ÒÒÊÇͼ¢Ú | B£®¼×ÊÇͼ¢Ù£¬ÒÒÊÇͼ¢Ü |
C£®¼×ÊÇͼ¢Û£¬ÒÒÊÇͼ¢Ú | D£®¼×ÊÇͼ¢Û£¬ÒÒÊÇͼ¢Ü |
B
½âÎö
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
Æ溯Êýf(x)ÔÚÉϵ¥µ÷µÝÔö£¬Èôf(-1)=0,Ôò²»µÈʽf(x)<0µÄ½â¼¯ÊÇ( )
A£® | B£® |
C£® | D£® |
·½³Ì µÄ½âËùÔÚµÄÇø¼äÊÇ£¨ £©
A£®£¨0,1£© | B£®(1,2) | C£®(2,3) | D£®(3,4) |
Æ溯ÊýµÄ±í´ïʽΪ
£¨ £©
A£® | B£® | C£® | D£® |
ÒÑ֪żº¯ÊýÔÚÇø¼äÉÏÊÇÔöº¯Êý£¬ÏÂÁв»µÈʽһ¶¨³ÉÁ¢µÄÊÇ
A£® | B£® |
C£® | D£® |
żº¯Êýf(x)Âú×ãf(x-1) =f(x+1)£¬ÇÒÔÚʱ£¬f(x)=-x+1£¬Ôò¹ØÓÚxµÄ·½³Ì£¬ÔÚÉϽâµÄ¸öÊýÊÇ £¨ £©
A£®1 | B£®2 | C£®3 | D£®4 |
º¯ÊýµÄ·´º¯ÊýΪ£¨¡¡¡¡£©
A£® | B£® |
C£® | D£® |
É裬ÔòµÄ¶¨ÒåÓòΪ £¨ £©
A£® | B£® | C£® | D£® |