题目内容

(文)袋中有大小相同的红球和白球若干个,其中红、白球个数的比为4:3.假设从袋中任取2个球,取到的都是红球的概率为
(1)试问:袋中的红、白球各有多少个?
(2)从袋中任取3个球,若取到一个红球,则记2分,若取到一个白球,则记1分.试求:所取出球的总分不超过5分的概率.
【答案】分析:(1)设袋中有红球4k个,白球3k个,然后根据从袋中任取2个球,取到的都是红球的概率为建立等式,求出k的值即可求出所求.
(2)先求出所有的基本事件,然后求出取出球的总分不超过的事件所包含的基本事件的个数,最后根据古典概型的概率公式解之即可.
解答:解:(1)设袋中有红球4k个,白球3k个,由题设,解得k=2,…(4分)
因此,袋中有红球8个,白球6个.                                   …(6分)
(2)从袋中14个球中取出3个球,其可能出现的取法有C143种,即所有的基本事件有C143个.      …(8分)
若把“取出球的总分不超过(5分)”的事件记作E,则E所包含的基本事件有C63+C62C81+C61C82个,…(12分)
因此,E出现的概率.                   …(14分)
点评:本题主要考查了等可能事件的概率,以及古典概型的概率公式,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网