题目内容

某种产品的广告费支出与销售额(单位:万元)之间有如下对应数据:


2
4
5
6
8

30
40
60
50
70
(1)求回归直线方程;
(2)试预测广告费支出为10万元时,销售额多大?
(3)在已有的五组数据中任意抽取两组,求至少有一组数据其预测值与实际值之差的绝对值不超过5的概率.
(参考数据:    
参考公式:线性回归方程系数:

(1)(2)销售收入大约为82.5万元(3)

解析试题分析:(1)首先求出x,y的平均数,利用最小二乘法做出线性回归方程的系数,根据样本中心点满足线性回归方程,代入已知数据求出a的值,写出线性回归方程.(2)当自变量取10时,把10代入线性回归方程,求出销售额的预报值,这是一个估计数字,它与真实值之间有误差.(3)利用列举法计算基本事件数及事件发生的概率 .本题考查回归分析的初步应用,考查求线性回归方程,考查预报y的值,是一个综合题目,解此类题,关键是理解线性回归分析意义,这种题目是新课标的大纲要求掌握的题型,是一个典型的题目,在近年的高考中频率有增高的趋势,此类题运算量大,解题时要严谨防止运算出错.
试题解析:(1)解:[2分]
又已知 , 
于是可得:,  [4分]
 因此,所求回归直线方程为:        [6分]
(2)解:根据上面求得的回归直线方程,当广告费支出为10万元时,
 (万元) 即这种产品的销售收入大约为82.5万元. [9分]
(3)解:


2
4
5
6
8

30
40
60
50
70

30.5
43.5
50
56.5
69.5
基本事件:(30,40),(30,60),(30,50),(30,70),(40,60),(40,50),(40,70),
(60,50),(60,70),(50,70)共10个
两组数据其预测值与实际值之差的绝对值都超过5:(60,50)   [12分]
所以至少有一组数据其预测值与实际值之差的绝对值不超过5的概率为
           [14分]
考点:1.回归分析的初步应用;2.列举法计算基本事件数及事件发生的概率

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网