题目内容
如图,已知AB⊥平面ACD,DE⊥平面ACD,△ACD为等边三角形,AD=DE=2AB,F为CD的中点.(1)求证:AF∥平面BCE;
(2)求证:平面BCE⊥平面CDE;
(3)求直线BF和平面BCE所成角的正弦值.
分析:(1)取CE的中点G,由三角形的中位线性质证明四边形GFAB为平行四边形,得到AF∥BG,从而证明AF∥平面BCE.
(2)通过证明AF⊥CD,DE⊥AF,从而证明AF⊥平面CDE,再利用BG∥AF证明BG⊥平面CDE,进而证明平面BCE⊥平面CDE.
(3)在平面CDE内,过F作FH⊥CE于H,由平面BCE⊥平面CDE,得 FH⊥平面BCE,故∠FBH为BF和平面BCE所成的角,解Rt△FHB求出∠FBH的正弦值.
(2)通过证明AF⊥CD,DE⊥AF,从而证明AF⊥平面CDE,再利用BG∥AF证明BG⊥平面CDE,进而证明平面BCE⊥平面CDE.
(3)在平面CDE内,过F作FH⊥CE于H,由平面BCE⊥平面CDE,得 FH⊥平面BCE,故∠FBH为BF和平面BCE所成的角,解Rt△FHB求出∠FBH的正弦值.
解答:(1)证明:取CE的中点G,连FG、BG.
∵F为CD的中点,∴GF∥DE且GF=
DE.
∵AB⊥平面ACD,DE⊥平面ACD,
∴AB∥DE,∴GF∥AB.
又AB=
DE,∴GF=AB.
∴四边形GFAB为平行四边形,则AF∥BG.
∵AF?平面BCE,BG?平面BCE,
∴AF∥平面BCE.
(2)证明:∵△ACD为等边三角形,F为CD的中点,∴AF⊥CD.
∵DE⊥平面ACD,AF?平面ACD,∴DE⊥AF.
又CD∩DE=D,故AF⊥平面CDE.
∵BG∥AF,∴BG⊥平面CDE.
∵BG?平面BCE,
∴平面BCE⊥平面CDE.
(3)解:在平面CDE内,过F作FH⊥CE于H,连BH.
∵平面BCE⊥平面CDE,∴FH⊥平面BCE.
∴∠FBH为BF和平面BCE所成的角.
设AD=DE=2AB=2a,则FH=CFsin45°=
a,BF=
=
=2a,
Rt△FHB中,sin∠FBH=
=
.
∴直线BF和平面BCE所成角的正弦值为
.
∵F为CD的中点,∴GF∥DE且GF=
1 |
2 |
∵AB⊥平面ACD,DE⊥平面ACD,
∴AB∥DE,∴GF∥AB.
又AB=
1 |
2 |
∴四边形GFAB为平行四边形,则AF∥BG.
∵AF?平面BCE,BG?平面BCE,
∴AF∥平面BCE.
(2)证明:∵△ACD为等边三角形,F为CD的中点,∴AF⊥CD.
∵DE⊥平面ACD,AF?平面ACD,∴DE⊥AF.
又CD∩DE=D,故AF⊥平面CDE.
∵BG∥AF,∴BG⊥平面CDE.
∵BG?平面BCE,
∴平面BCE⊥平面CDE.
(3)解:在平面CDE内,过F作FH⊥CE于H,连BH.
∵平面BCE⊥平面CDE,∴FH⊥平面BCE.
∴∠FBH为BF和平面BCE所成的角.
设AD=DE=2AB=2a,则FH=CFsin45°=
| ||
2 |
AB2+AF2 |
a2+(
|
Rt△FHB中,sin∠FBH=
FH |
BF |
| ||
4 |
∴直线BF和平面BCE所成角的正弦值为
| ||
4 |
点评:本题考查证明线面平行的方法,2个平面垂直的方法,求直线与平面成的角的方法,属于中档题.
练习册系列答案
相关题目