题目内容

已知向量,(x,y,b,c∈R),且把其中x,y所满足的关系式记为y=f(x),若f′(x)为f(x)的导函数,F(x)=f(x)+af′(x)(a>0),且F(x)是R上的奇函数.
(Ⅰ)求和c的值;
(Ⅱ)若函数f(x)在上单调递减,求b的取值范围;
(Ⅲ)当a=2时,设0<t<4且t≠2,曲线y=f(x)在点A(t,f(t))处的切线与曲线y=f(x)相交于点B(m,f(m))(A,B不重合),直线x=t与y=f(m)相交于点C,△ABC的面积为S,试用t表示△ABC的面积S(t),若P为S(t)上一动点,D(4,0),求直线PD的斜率的取值范围.
【答案】分析:(Ⅰ) 利用两个向量平行的性质以及奇函数的定义,求出和c的值.
(Ⅱ) 由导数小于0得到函数的减区间,又已知减区间,故有[,a2]⊆[0,2a],故有,
再结合(Ⅰ)知b=-3a,可得b的取值范围.
(Ⅲ) 利用曲线y=f(x)在点A(t,f(t))处的切线方程为y-f(t)=f′(x)(x-t),得(x-t)2(x+2t-6)=0,则x=t或x=-2t+6,而A,B不重合,则m=-2t+6,S(t)=|m-t|•|f(m)-f(t)|,=t(t-2)2(4-t),记kPD =g(t),g′(t)=-(3t-2)(t-2),利用g′(t)的符号列表求出g(t)的最值,即得kPD的范围.
解答:解:(Ⅰ)∵=(x2,y-cx),=(1,x+b),∴x2(x+b)=y-cx,
∴f(x)=x3+bx2+cx,f′(x)=3x2+2bx+c,
∴F(x)=f(x)+af′(x)=x3+(3a+b)x2+(2b+c)x+ac 为奇函数
∴F(-x)=-F(x),∴3a+b=0,ac=0,而a>0,
=-3,c=0.
(Ⅱ)由(Ⅰ)可知f(x)=x3-3ax2,f′(x)=3x2-6ax=3x(x-2a),
由f′(x)<0,得0<x<2a,故f(x)的单调递减区间为[0,2a],
若函数f(x)在[,a2]上单调递减,则[,a2]⊆[0,2a],??<a<2,
而由(Ⅰ)知b=-3a,故-6<b<-
(Ⅲ)当a=2时,由(Ⅰ)知b=-6,∴f(x)=x3-6x2,f′(x)=3x2-12x.
曲线y=f(x)在点A(t,f(t))处的切线方程为y-f(t)=f′(x)(x-t),其中f′(x)=3t2-12t.
联立y=f(x)与y-f(t)=f′(x)(x-t),得 f(x)-f(t)=f′(x)(x-t),
∴x3-6x2-t3+6t2 =(3t2-12t)(x-t),∴(x3-t3)-6(x2-t2)-(3t2-12t)(x-t)=0,
∴(x-t)(x2+tx+t2-6x-6t-3t2+12t)=0,∴(x-t)[x2+(t-6)x-t(2t-6)]=0,
∴(x-t)2(x+2t-6)=0
则x=t或x=-2t+6,而A,B不重合,则m=-2t+6,
S(t)=|m-t|•|f(m)-f(t)|=|6-3t|•|(6-2t)3-6(6-2t)2-t3+6t2|
=|6-3t|•|-9t3+54t2-72t|=|t-2|•|t(t-2)(t-4)|=t(t-2)2(4-t),
其中t∈(0,2)∪(2,4).
记kPD =g(t)==-t(t-2)2 =-(t3-4t2+4t),
∴g′(t)=-(3t2-8t+4)=-(3t-2)(t-2),t∈(0,2)∪(2,4).
列表如下:
t(0,,2)2(2,4)
g′(t)-+-
g(t)极小值极大值
又g(0)=0,g()=-16,g(2)=0,g(4)=-216,
由表可知:-216<g(t)≤0,即-216<kPD≤0.
点评:本题考查两个向量平行的性质,函数的单调性与导数的关系,以及利用导数求函数的最大值、最小值.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网