题目内容
(2012•洛阳模拟)已知F是抛物线y2=4x的焦点,过点F1的直线与抛物线交于A,B两点,且|AF|=3|BF|,则线段AB的中点到该抛物线准线的距离为( )
分析:根据抛物线的方程求出准线方程,利用抛物线的定义即条件,求出A,B的中点横坐标,即可求出线段AB的中点到抛物线准线的距离.
解答:解:抛物线y2=4x的焦点坐标为(1,0),准线方程为x=-1
设A(x1,y1),B(x2,y2),则
∵|AF|=3|BF|,∴x1+1=3(x2+1),∴x1=3x2+2
∵|y1|=3|y2|,∴x1=9x2,∴x1=3,x2=
∴线段AB的中点到该抛物线准线的距离为
[(x1+1)+(x2+1)]=
故选B.
设A(x1,y1),B(x2,y2),则
∵|AF|=3|BF|,∴x1+1=3(x2+1),∴x1=3x2+2
∵|y1|=3|y2|,∴x1=9x2,∴x1=3,x2=
1 |
3 |
∴线段AB的中点到该抛物线准线的距离为
1 |
2 |
8 |
3 |
故选B.
点评:本题考查解决抛物线上的点到焦点的距离问题,利用抛物线的定义将到焦点的距离转化为到准线的距离是关键.
练习册系列答案
相关题目