题目内容

已知A(3,0),B(0,3),C(cosα,sinα).
(1)若|
OA
+
OC
|=
13
,且α∈(0,π),求
OB
OC
夹角的大小;
(2)若(
OA
+2
OB
)⊥
OC
,求cos2α.
分析:(1)由题意可得
OA
OB
OC
的坐标,进而可得
OA
+
OC
的坐标,由已知和向量的模长公式可解得cosα,可得
OB
OC
的值,代入夹角公式可得夹角的余弦值,可得夹角;
(2)由(1)可得
OA
+2
OB
,由向量垂直可得(
OA
+2
OB
)•
OC
=0,代入数据计算可得tanα的值,由三角函数的知识可得cos2α=
1-tan2α
1+tan2α
,代入运算可得.
解答:解:(1)由题意可得
OA
=(3,0),
OB
=(0,3),
OC
=(cosα,sinα),
OA
+
OC
=(3+cosα,sinα),
|
OA
+
OC
|
=
(3+cosα)2+sin2α
=
10+6cosα
=
13

解得cosα=
1
2
,又∵α∈(0,π),∴α=
π
3

OC
=(
1
2
3
2
),
OB
OC
=
3
3
2

∴cos<
OB
OC
>=
OB
OC
|
OB
||
OC
|
=
3
2

又<
OB
OC
>∈[0,π],
OB
OC
夹角为
π
6

(2)由(1)可得
OA
+2
OB
=(3,6),
(
OA
+2
OB
)⊥
OC
可得(
OA
+2
OB
)•
OC
=0,
代入数据可得3cosα+6sinα=0,解得tanα=-
1
2

∴cos2α=cos2α-sin2α=
cos2α-sin2α
cos2α+sin2α

=
1-tan2α
1+tan2α
=
1-(-
1
2
)2
1+(-
1
2
)2
=
3
5
点评:本题考查数量积与向量夹角的关系,涉及三角函数的运算,属中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网