题目内容
已知A(3,0),B(0,3),C(cosα,sinα).
(1)若|
+
|=
,且α∈(0,π),求
与
夹角的大小;
(2)若(
+2
)⊥
,求cos2α.
(1)若|
OA |
OC |
13 |
OB |
OC |
(2)若(
OA |
OB |
OC |
分析:(1)由题意可得
,
,
的坐标,进而可得
+
的坐标,由已知和向量的模长公式可解得cosα,可得
•
的值,代入夹角公式可得夹角的余弦值,可得夹角;
(2)由(1)可得
+2
,由向量垂直可得(
+2
)•
=0,代入数据计算可得tanα的值,由三角函数的知识可得cos2α=
,代入运算可得.
OA |
OB |
OC |
OA |
OC |
OB |
OC |
(2)由(1)可得
OA |
OB |
OA |
OB |
OC |
1-tan2α |
1+tan2α |
解答:解:(1)由题意可得
=(3,0),
=(0,3),
=(cosα,sinα),
∴
+
=(3+cosα,sinα),
∴|
+
|=
=
=
,
解得cosα=
,又∵α∈(0,π),∴α=
,
∴
=(
,
),
•
=
,
∴cos<
,
>=
=
,
又<
,
>∈[0,π],
∴
与
夹角为
;
(2)由(1)可得
+2
=(3,6),
由(
+2
)⊥
可得(
+2
)•
=0,
代入数据可得3cosα+6sinα=0,解得tanα=-
∴cos2α=cos2α-sin2α=
=
=
=
OA |
OB |
OC |
∴
OA |
OC |
∴|
OA |
OC |
(3+cosα)2+sin2α |
10+6cosα |
13 |
解得cosα=
1 |
2 |
π |
3 |
∴
OC |
1 |
2 |
| ||
2 |
OB |
OC |
3
| ||
2 |
∴cos<
OB |
OC |
| ||||
|
|
| ||
2 |
又<
OB |
OC |
∴
OB |
OC |
π |
6 |
(2)由(1)可得
OA |
OB |
由(
OA |
OB |
OC |
OA |
OB |
OC |
代入数据可得3cosα+6sinα=0,解得tanα=-
1 |
2 |
∴cos2α=cos2α-sin2α=
cos2α-sin2α |
cos2α+sin2α |
=
1-tan2α |
1+tan2α |
1-(-
| ||
1+(-
|
3 |
5 |
点评:本题考查数量积与向量夹角的关系,涉及三角函数的运算,属中档题.
练习册系列答案
相关题目