ÌâÄ¿ÄÚÈÝ
£¨2012•¹óÖÝÄ£Ä⣩ΪÁ˲μÓ2012Äê¹óÖÝÊ¡¸ßÖÐÀºÇò±ÈÈü£¬Ä³ÖÐѧ¾ö¶¨´ÓËĸöÀºÇò½ÏÇ¿µÄ°à¼¶ÖÐÑ¡³ö12ÈË×é³ÉÄÐ×ÓÀºÇò¶Ó´ú±íËùÔÚµØÇø²ÎÈü£¬¶ÓÔ±À´Ô´ÈËÊýÈçÏÂ±í£º
£¨I£©´ÓÕâ12Ãû¶ÓÔ±ÖÐËæ»úÑ¡³öÁ½Ãû£¬ÇóÁ½ÈËÀ´×Ôͬһ°à¼¶µÄ¸ÅÂÊ£»
£¨II£©¸ÃÖÐѧÀºÇò¶Ó¾¹ý·ÜÁ¦Æ´²«»ñµÃ¹Ú¾ü£®ÈôÒªÇóÑ¡³öÁ½Î»¶ÓÔ±´ú±í¹Ú¾ü¶Ó·¢ÑÔ£¬ÉèÆäÖÐÀ´×Ô¸ßÈý£¨7£©°àµÄÈËÊýΪ¦Î£¬ÇóËæ»ú±äÁ¿¦ÎµÄ·Ö²¼Áм°ÊýѧÆÚÍûE¦Î£®
°à¼¶ | ¸ßÈý£¨7£©°à | ¸ßÈý£¨17£©°à | ¸ß¶þ£¨31£©°à | ¸ß¶þ£¨32£©°à |
ÈËÊý | 4 | 2 | 3 | 3 |
£¨II£©¸ÃÖÐѧÀºÇò¶Ó¾¹ý·ÜÁ¦Æ´²«»ñµÃ¹Ú¾ü£®ÈôÒªÇóÑ¡³öÁ½Î»¶ÓÔ±´ú±í¹Ú¾ü¶Ó·¢ÑÔ£¬ÉèÆäÖÐÀ´×Ô¸ßÈý£¨7£©°àµÄÈËÊýΪ¦Î£¬ÇóËæ»ú±äÁ¿¦ÎµÄ·Ö²¼Áм°ÊýѧÆÚÍûE¦Î£®
·ÖÎö£º£¨I£©¡°´ÓÕâ18Ãû¶ÓÔ±ÖÐËæ»úÑ¡³öÁ½Ãû£¬Á½ÈËÀ´×ÔÓÚͬһ°à¼¶¡±¼Ç×÷ʼþA£¬ÓÉÅÅÁÐ×éºÏ֪ʶÄÜÇó³öÆä¸ÅÂÊ£®
£¨II£©¦ÎµÄËùÓпÉÄÜȡֵΪ0£¬1£¬2£¬·Ö±ðÇó³öÆä¸ÅÂÊ£¬ÄÜÇó³ö¦ÎµÄ·Ö²¼ÁкÍÊýѧÆÚÍû£®
£¨II£©¦ÎµÄËùÓпÉÄÜȡֵΪ0£¬1£¬2£¬·Ö±ðÇó³öÆä¸ÅÂÊ£¬ÄÜÇó³ö¦ÎµÄ·Ö²¼ÁкÍÊýѧÆÚÍû£®
½â´ð£º½â£º£¨I£©¡°´ÓÕâ18Ãû¶ÓÔ±ÖÐËæ»úÑ¡³öÁ½Ãû£¬Á½ÈËÀ´×ÔÓÚͬһ°à¼¶¡±¼Ç×÷ʼþA£¬
ÔòP(A)=
=
£®
£¨II£©¦ÎµÄËùÓпÉÄÜȡֵΪ0£¬1£¬2£¬
ÔòP(¦Î=0)=
=
£¬P(¦Î=1)=
=
£¬P(¦Î=2)=
=
£¬
¡à¦ÎµÄ·Ö²¼ÁÐΪ£º
¡àE¦Î=0¡Á
+1¡Á
+2¡Á
=
£®
ÔòP(A)=
| ||||||||
|
13 |
66 |
£¨II£©¦ÎµÄËùÓпÉÄÜȡֵΪ0£¬1£¬2£¬
ÔòP(¦Î=0)=
| ||||
|
14 |
33 |
| ||||
|
16 |
33 |
| ||||
|
3 |
33 |
¡à¦ÎµÄ·Ö²¼ÁÐΪ£º
¦Î | 0 | 1 | 2 | ||||||
P |
|
|
|
14 |
33 |
16 |
33 |
3 |
33 |
2 |
3 |
µãÆÀ£º±¾Ì⿼²éÀëÉ¢ÐÍËæ»ú±äÁ¿µÄ·Ö²¼ÁкÍÊýѧÆÚÍûµÄÇ󷨣¬½âÌâʱҪÈÏÕæÉóÌ⣬עÒâ¸ÅÂÊ֪ʶµÄºÏÀíÔËÓã®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿