题目内容
设数列{an}是首项为a1(a1>0),公差为2的等差数列,其前n项和为Sn,且S1 |
S2 |
S3 |
(Ⅰ)求数列{an]的通项公式;
(Ⅱ)记bn=
an |
2n |
分析:(I)有数列{an}是首项为a1(a1>0),公差为2的等差数列且
,
,
成等差数列,可以先求出数列的首项即可;
(II)有 (I)和bn=
,求出数列bn的通项,有通项求出前n项和为Tn.
S1 |
S2 |
S3 |
(II)有 (I)和bn=
an |
2n |
解答:解:(Ⅰ)∵S1=a1,S2=a1+a2=2a1+2,S3=a1+a2+a3=3a1+6,
由
,
,
成等差数列得,2
=
+
,即2
=
+
,
解得a1=1,故an=2n-1;
(Ⅱ)bn=
=
=(2n-1)(
)n,
Tn=1×(
)1+3×(
)2+5×(
)3++(2n-1)×(
)n,①
①×
得,
Tn=1×(
)2+3×(
)3+5×(
)4++(2n-3)×(
)n+(2n-1)×(
)n+1,②
①-②得,
Tn=
+2×(
)2+2×(
)3++2×(
)n-(2n-1)×(
)n+1=2×
-
-(2n-1)×(
)n+1=
-
-
,
∴Tn=3-
-
=3-
.
由
S1 |
S2 |
S3 |
S2 |
S1 |
S3 |
2a1+2 |
a1 |
3a1+6 |
解得a1=1,故an=2n-1;
(Ⅱ)bn=
an |
2n |
2n-1 |
2n |
1 |
2 |
Tn=1×(
1 |
2 |
1 |
2 |
1 |
2 |
1 |
2 |
①×
1 |
2 |
1 |
2 |
1 |
2 |
1 |
2 |
1 |
2 |
1 |
2 |
1 |
2 |
①-②得,
1 |
2 |
1 |
2 |
1 |
2 |
1 |
2 |
1 |
2 |
1 |
2 |
| ||||
1-
|
1 |
2 |
1 |
2 |
3 |
2 |
1 |
2n-1 |
2n-1 |
2n+1 |
∴Tn=3-
4 |
2n |
2n-1 |
2n |
2n+3 |
2n |
点评:此题考查了等差数列的通项公式及等差中项,还考查了错位相减法求数列的前n项的和.
练习册系列答案
相关题目
设数列{an}是首项为1公比为3的等比数列,把{an}中的每一项都减去2后,得到一个新数列{bn},{bn}的前n项和为Sn,对任意的n∈N*,下列结论正确的是( )
A、bn+1=3bn,且Sn=
| ||
B、bn+1=3bn-2,且Sn=
| ||
C、bn+1=3bn+4,且Sn=
| ||
D、bn+1=3bn-4,且Sn=
|