题目内容

设数列{an}是首项为a1(a1>0),公差为2的等差数列,其前n项和为Sn,且
S1
S2
S3
成等差数列.
(Ⅰ)求数列{an]的通项公式;
(Ⅱ)记bn=
an
2n
的前n项和为Tn,求Tn
分析:(I)有数列{an}是首项为a1(a1>0),公差为2的等差数列且
S1
S2
S3
成等差数列,可以先求出数列的首项即可;
(II)有 (I)和bn=
an
2n
,求出数列bn的通项,有通项求出前n项和为Tn
解答:解:(Ⅰ)∵S1=a1,S2=a1+a2=2a1+2,S3=a1+a2+a3=3a1+6,
S1
S2
S3
成等差数列得,2
S2
=
S1
+
S3
,即2
2a1+2
=
a1
+
3a1+6

解得a1=1,故an=2n-1;
(Ⅱ)bn=
an
2n
=
2n-1
2n
=(2n-1)(
1
2
)n

Tn=1×(
1
2
)1+3×(
1
2
)2+5×(
1
2
)3++(2n-1)×(
1
2
)n
,①
①×
1
2
得,
1
2
Tn=1×(
1
2
)2+3×(
1
2
)3+5×(
1
2
)4++(2n-3)×(
1
2
)n+(2n-1)×(
1
2
)n+1
,②
①-②得,
1
2
Tn=
1
2
+2×(
1
2
)2+2×(
1
2
)3++2×(
1
2
)n-(2n-1)×(
1
2
)n+1
=
1
2
(1-
1
2n
)
1-
1
2
-
1
2
-(2n-1)×(
1
2
)n+1=
3
2
-
1
2n-1
-
2n-1
2n+1

Tn=3-
4
2n
-
2n-1
2n
=3-
2n+3
2n
点评:此题考查了等差数列的通项公式及等差中项,还考查了错位相减法求数列的前n项的和.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网