ÌâÄ¿ÄÚÈÝ
Èô
»ò1£¬i=1£¬2£¬¡£¬n£©£¬Ôò³ÆAnΪ0ºÍ1µÄÒ»¸önλÅÅÁУ®¶ÔÓÚAn£¬½«ÅÅÁÐ
¼ÇΪR1£¨An£©£»½«ÅÅÁÐ
¼ÇΪR2£¨An£©£»ÒÀ´ËÀàÍÆ£¬Ö±ÖÁRn£¨An£©=An£®¶ÔÓÚÅÅÁÐAnºÍRi£¨An£©£¨i=1£¬2£¬¡£¬n-1£©£¬ËüÃǶÔӦλÖÃÊý×ÖÏàͬµÄ¸öÊý¼õÈ¥¶ÔӦλÖÃÊý×Ö²»Í¬µÄ¸öÊý£¬½Ð×öAnºÍRi£¨An£©µÄÏà¹ØÖµ£¬¼Ç×÷
£®ÀýÈç
£¬Ôò
£¬
£®Èô
£¬Ôò³ÆAnΪ×î¼ÑÅÅÁУ®
£¨¢ñ£©Ð´³öËùÓеÄ×î¼ÑÅÅÁÐA3£»
£¨¢ò£©Ö¤Ã÷£º²»´æÔÚ×î¼ÑÅÅÁÐA5£»
£¨¢ó£©Èôij¸öA2k+1£¨kÊÇÕýÕûÊý£©Îª×î¼ÑÅÅÁУ¬ÇóÅÅÁÐA2k+1ÖÐ1µÄ¸öÊý£®
£¨¢ñ£©½â£º×î¼ÑÅÅÁÐA3Ϊ
£¬
£¬
£¬
£¬
£¬
£® ¡£¨3·Ö£©
£¨¢ò£©Ö¤Ã÷£ºÉè
£¬Ôò
£¬
ÒòΪ
£¬ËùÒÔ|a1-a5|£¬|a2-a1|£¬|a3-a2|£¬|a4-a3|£¬|a5-a4|Ö®ÖÐÓÐ2¸ö0£¬3¸ö1£®
°´a5¡úa1¡úa2¡úa3¡úa4¡úa5µÄ˳ÐòÑо¿ÊýÂë±ä»¯£¬ÓÉÉÏÊö·ÖÎö¿ÉÖªÓÐ2´ÎÊýÂë²»·¢Éú¸Ä±ä£¬ÓÐ3´ÎÊýÂë·¢ÉúÁ˸ı䣮
µ«ÊÇa5¾¹ýÆæÊý´ÎÊýÂë¸Ä±ä²»Äܻص½×ÔÉí£¬ËùÒÔ²»´æÔÚA5£¬Ê¹µÃ
£¬
´Ó¶ø²»´æÔÚ×î¼ÑÅÅÁÐA5£® ¡£¨7·Ö£©
£¨¢ó£©½â£ºÓÉ
»ò1£¬i=1£¬2£¬¡£¬2k+1£©£¬µÃ
£¬
£¬
¡
£¬
£®
ÒòΪ
£¬
ËùÒÔ A2k+1Óëÿ¸öRi£¨A2k+1£©ÓÐk¸ö¶ÔӦλÖÃÊýÂëÏàͬ£¬ÓÐk+1¸ö¶ÔӦλÖÃÊýÂ벻ͬ£¬
Òò´ËÓÐ|a1-a2k+1|+|a2-a1|+¡+|a2k-a2k-1|+|a2k+1-a2k|=k+1£¬|a1-a2k|+|a2-a2k+1|+¡+|a2k-a2k-2|+|a2k+1-a2k-1|=k+1£¬
¡£¬|a1-a3|+|a2-a4|+¡+|a2k-a1|+|a2k+1-a2|=k+1£¬|a1-a2|+|a2-a3|+¡+|a2k-a2k+1|+|a2k+1-a1|=k+1£®
ÒÔÉϸ÷ʽÇóºÍµÃ£¬S=£¨k+1£©¡Á2k£® ¡£¨10·Ö£©
ÁíÒ»·½Ã棬S»¹¿ÉÒÔÕâÑùÇóºÍ£ºÉèa1£¬a2£¬¡£¬a2k£¬a2k+1ÖÐÓÐx¸ö0£¬y¸ö1£¬ÔòS=2xy£®¡£¨11·Ö£©
ËùÒÔ
½âµÃ
»ò
£¬
ËùÒÔÅÅÁÐA2k+1ÖÐ1µÄ¸öÊýÊÇk»òk+1£® ¡£¨13·Ö£©
·ÖÎö£º£¨¢ñ£©¸ù¾Ý×î¼ÑÅÅÁе͍Òå¿ÉµÃ£¬×î¼ÑÅÅÁÐA3Ϊ
£¬
£¬
£¬
£¬
£¬
£®
£¨¢ò£©ÓÉ
£¬¿ÉµÃ|a1-a5|£¬|a2-a1|£¬|a3-a2|£¬|a4-a3|£¬|a5-a4|Ö®ÖÐÓÐ2¸ö0£¬3¸ö1£¬¶øa5¾¹ýÆæÊý´ÎÊýÂë¸Ä±ä²»Äܻص½×ÔÉí£¬ËùÒÔ²»´æÔÚA5£¬Ê¹µÃ
£®
£¨¢ó£© A2k+1Óëÿ¸öRi£¨A2k+1£©ÓÐk¸ö¶ÔӦλÖÃÊýÂëÏàͬ£¬ÓÐk+1¸ö¶ÔӦλÖÃÊýÂ벻ͬ£¬Éèa1£¬a2£¬¡£¬a2k£¬a2k+1ÖÐÓÐx¸ö0£¬y¸ö1£¬ÔòS=2xy£¬¿ÉµÃ
£¬½âµÃ
»ò
£¬´Ó¶øµÃ³ö½áÂÛ£®
µãÆÀ£º±¾ÌâÖ÷Òª¿¼²éÅÅÁС¢×éºÏÒÔ¼°¼òµ¥¼ÆÊýÔÀíµÄÓ¦Óã¬ÌåÏÖÁË·ÖÀàÌÖÂÛµÄÊýѧ˼Ï룬ÊôÓÚÄÑÌ⣮
£¨¢ò£©Ö¤Ã÷£ºÉè
ÒòΪ
°´a5¡úa1¡úa2¡úa3¡úa4¡úa5µÄ˳ÐòÑо¿ÊýÂë±ä»¯£¬ÓÉÉÏÊö·ÖÎö¿ÉÖªÓÐ2´ÎÊýÂë²»·¢Éú¸Ä±ä£¬ÓÐ3´ÎÊýÂë·¢ÉúÁ˸ı䣮
µ«ÊÇa5¾¹ýÆæÊý´ÎÊýÂë¸Ä±ä²»Äܻص½×ÔÉí£¬ËùÒÔ²»´æÔÚA5£¬Ê¹µÃ
´Ó¶ø²»´æÔÚ×î¼ÑÅÅÁÐA5£® ¡£¨7·Ö£©
£¨¢ó£©½â£ºÓÉ
¡
ÒòΪ
ËùÒÔ A2k+1Óëÿ¸öRi£¨A2k+1£©ÓÐk¸ö¶ÔӦλÖÃÊýÂëÏàͬ£¬ÓÐk+1¸ö¶ÔӦλÖÃÊýÂ벻ͬ£¬
Òò´ËÓÐ|a1-a2k+1|+|a2-a1|+¡+|a2k-a2k-1|+|a2k+1-a2k|=k+1£¬|a1-a2k|+|a2-a2k+1|+¡+|a2k-a2k-2|+|a2k+1-a2k-1|=k+1£¬
¡£¬|a1-a3|+|a2-a4|+¡+|a2k-a1|+|a2k+1-a2|=k+1£¬|a1-a2|+|a2-a3|+¡+|a2k-a2k+1|+|a2k+1-a1|=k+1£®
ÒÔÉϸ÷ʽÇóºÍµÃ£¬S=£¨k+1£©¡Á2k£® ¡£¨10·Ö£©
ÁíÒ»·½Ã棬S»¹¿ÉÒÔÕâÑùÇóºÍ£ºÉèa1£¬a2£¬¡£¬a2k£¬a2k+1ÖÐÓÐx¸ö0£¬y¸ö1£¬ÔòS=2xy£®¡£¨11·Ö£©
ËùÒÔ
ËùÒÔÅÅÁÐA2k+1ÖÐ1µÄ¸öÊýÊÇk»òk+1£® ¡£¨13·Ö£©
·ÖÎö£º£¨¢ñ£©¸ù¾Ý×î¼ÑÅÅÁе͍Òå¿ÉµÃ£¬×î¼ÑÅÅÁÐA3Ϊ
£¨¢ò£©ÓÉ
£¨¢ó£© A2k+1Óëÿ¸öRi£¨A2k+1£©ÓÐk¸ö¶ÔӦλÖÃÊýÂëÏàͬ£¬ÓÐk+1¸ö¶ÔӦλÖÃÊýÂ벻ͬ£¬Éèa1£¬a2£¬¡£¬a2k£¬a2k+1ÖÐÓÐx¸ö0£¬y¸ö1£¬ÔòS=2xy£¬¿ÉµÃ
µãÆÀ£º±¾ÌâÖ÷Òª¿¼²éÅÅÁС¢×éºÏÒÔ¼°¼òµ¥¼ÆÊýÔÀíµÄÓ¦Óã¬ÌåÏÖÁË·ÖÀàÌÖÂÛµÄÊýѧ˼Ï룬ÊôÓÚÄÑÌ⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿