题目内容

将编号为1,2,…,9的九个小球随机放置在圆周的九个等分点上,每个等分点上各有一个小球.设圆周上所有相邻两球号码之差的绝对值之和为要S.求使S达到最小值的放法的概率.(注:如果某种放法,经旋转或镜面反射后可与另一种放法重合,则认为是相同的放法)
九个编号不同的小球放在圆周的九个等分点上,每点放一个,相当于九个不同元素在圆周上的一个圆形排列,故共有8!种放法,考虑到翻转因素,则本质不同的放法有种.…5分
下求使S达到最小值的放法数:在圆周上,从1到9有优弧与劣弧两条路径,对其中任一条路径,设是依次排列于这段弧上的小球号码,则
上式取等号当且仅当,即每一弧段上的小球编号都是由1到9递增排列.
因此.…………………………………………………………………10分
由上知,当每个弧段上的球号确定之后,达到最小值的排序方案便唯一确定.
在1,2,…,9中,除1与9外,剩下7个球号2,3,…,8,将它们分为两个子集,元素较少的一个子集共有种情况,每种情况对应着圆周上使S值达到最小的唯一排法,即有利事件总数是种,故所求概率……………20分
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网