题目内容

已知直线l:y=x+m与椭圆
x2
20
+
y2
5
=1
相交于不同的两点A,B,点M(4,1)为定点.
(1)求m的取值范围;
(2)若直线l不过点M,求证:直线MA,MB与x轴围成一个等腰三角形.
(1)直线l:y=x+m代入椭圆
x2
20
+
y2
5
=1
,可得5x2+8mx+4m2-20=0
∵直线l:y=x+m与椭圆
x2
20
+
y2
5
=1
相交于不同的两点A,B,
∴△=64m2-20(4m2-20)>0,
∴-5<m<5;
(2)证明:设直线MA、MB的斜率分别为k1,k2,点A(x1,y1),B(x2,y2),则x1+x2=-
8m
5
,x1x2=
4m2-20
5

∴k1+k2=
y1-1
x1-4
+
y2-1
x2-4
=
(x1+m-1)(x2-4)+(x2+m-1)(x1-4)
x1x2-4(x1+x2)+16
=
2x1x2+(m-5)(x1+x2)-8(m-1)
x1x2-4(x1+x2)+16

=
2•
4m2-20
5
+(m-5)(-
8m
5
)-8(m-1)
x1x2-4(x1+x2)+16
=0
∴直线MA、MB的倾斜角互补,故直线MA,MB与x轴围成一个等腰三角形.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网