题目内容
(本小题满分14分)
已知数列{an}中,a1=t(t∈R,且t≠0,1),a2=t2,且当x=t时,
函数f(x)=(an-an-1)x2-(an+1-an)x(n≥2,n∈N?)取得极值.
(Ⅰ)求证:数列{an+1-an}是等比数列;
(Ⅱ)若bn=anln|an|(n∈N?),求数列{bn}的前n项和Sn;
(Ⅲ)当t=-时,数列{bn}中是否存在最大项?如果存在,说明是第几项;如果不存在,请说明理由.
解:(Ⅰ)由f′(t)=0,得(an-an-1)t=an+1-an(n≥2)
又a2-a1=t(t-1),t≠0且t≠1,∴a2-a1≠0,
∴=t.
∴数列{an+1-an}是首项为t2-t,公比为t的等比数列. (3分)
(Ⅱ)由(Ⅰ)知an+1-an=tn+1-tn,
∴an-an-1=tn-tn-1,
∴an-1-an-2=tn-1-tn-2,
…,…
a2-a1=t2-t,
上面n-1个等式相加并整理得an=tn.(t≠0且t≠1)
bn=anln|an|=tn·ln|tn|=ntn·ln|t|.
∴Sn=(t+2·t2+3·t3+…+n·tn)ln|t|,
tSn=[t2+2·t3+…+(n-1)tn+n·tn+1]ln|t|,
两式相减,并整理得Sn=ln|t|. (9分)
(Ⅲ)∵t=-即-1<t<0,
∴当n为偶数时,bn=ntnln|t|<0;
当n为奇数时,bn=ntnln|t|>0,∴最大项必须为奇数项.
设最大项为b2k+1,则有
即
整理得
将t2=代入上式,解得≤k≤.
∵k∈N,
∴k=2,即数列{bn}中的最大项是第5项. (14分)
【解析】略