题目内容

已知函数

(1)讨论函数的单调性;

(2)若时,关于的方程有唯一解,求的值;

(3)当时,证明: 对一切,都有成立.

 

【答案】

(1)当k是奇数时, f(x)在(0,+)上是增函数;     

当k是偶数时,f (x)在上是减函数,在上是增函数.

(2)

(3)当时, 问题等价于证明

由导数可求的最小值是,当且仅当时取到,

,利用导数求解。

【解析】

试题分析:(1)由已知得x>0且

当k是奇数时,,则f(x)在(0,+)上是增函数;     

当k是偶数时,则.   

所以当x时,,当x时,

故当k是偶数时,f (x)在上是减函数,在上是增函数.…………4分

(2)若,则

 ,

若方程f(x)=2ax有唯一解,即g(x)=0有唯一解;   令,得.因为,所以(舍去),. 当时,是单调递减函数;

时,上是单调递增函数.

当x=x2时, .   因为有唯一解,所以

 即  设函数

因为在x>0时,h (x)是增函数,所以h (x) = 0至多有一解.

因为h (1) = 0,所以方程(*)的解为x 2 = 1,从而解得…………10分

另解:有唯一解,所以:,令,则,设,显然是增函数且,所以当,当,于是有唯一的最小值,所以,综上:

(3)当时, 问题等价于证明

由导数可求的最小值是,当且仅当时取到,

,则

易得,当且仅当 时取到,

从而对一切,都有成立.故命题成立.…………16分

考点:利用导数研究函数的单调性,不等式恒成立问题。

点评:难题,利用导数研究函数的单调性、极值、最值,不等式恒成立问题,是导数应用的常见问题,本题因为参数的引入,增大了讨论的难度,学生易出错。不等式恒成立问题,往往通过构造函数,研究函数的最值,使问题得解。

 

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网