题目内容
(本小题满分分)(Ⅰ)若是公差不为零的等差数列的前n项和,且成等比数列,求数列的公比; (II)设是公比不相等的两个等比数列,,证明数列不是等比数列。
(Ⅰ)(II)证明略
解析
(本小题满分分)
在股票市场上,投资者常参考 股价(每一股的价格)的某条平滑均线(记作)的变化情况来决定买入或卖出股票.股民老张在研究股票的走势图时,发现一只股票的均线近期走得很有特点:如果按如图所示的方式建立平面直角坐标系,则股价(元)和时间的关系在段可近似地用解析式 ()来描述,从点走到今天的点,是震荡筑底阶段,而今天出现了明显的筑底结束的标志,且点和点正好关于直线对称.老张预计这只股票未来的走势如图中虚线所示,这里段与段关于直线对称,段是股价延续段的趋势(规律)走到这波上升行情的最高点.
现在老张决定取点,点,点来确定解析式中的常数,并且已经求得.
(Ⅰ)请你帮老张算出,并回答股价什么时候见顶(即求点的横坐标).
(Ⅱ)老张如能在今天以点处的价格买入该股票股,到见顶处点的价格全部卖出,不计其它费用,这次操作他能赚多少元?
设函数.
(Ⅰ)求函数单调区间;
(Ⅱ)若恒成立,求的取值范围;
(Ⅰ)若是公差不为零的等差数列前n项的和,且成等比数列,求数列的公比;
(II)设是公比不相等的两个等比数列,,证明数列不是等比数列。
已知函数,
(1)判断函数的奇偶性;
(2)求函数的值域。