题目内容

(Ⅰ)求证:BC1∥平面CA1D;
(Ⅱ)求直线A1B1与平面A1DC的所成角的正弦值.
分析:(Ⅰ)要证BC1∥平面CA1D,必须证明BC1∥平面CA1D内的一条直线,因而连接AC1与A1C的交点E与D,证明即可;
(Ⅱ)由VB1-A1DC=VC-A1B1D可求点B1到平面A1DC的距离,即可求直线A1B1与平面A1DC的所成角的正弦值.
(Ⅱ)由VB1-A1DC=VC-A1B1D可求点B1到平面A1DC的距离,即可求直线A1B1与平面A1DC的所成角的正弦值.
解答:(Ⅰ)证明:连接BC1,连接AC1交A1C于E,连接DE,则E是AC1中点,
∵D是AB中点,∴DE∥BC1,
又∵DE?面CA1D,BC1?面CA1D,
∴BC1∥面CA1D;
(Ⅱ)设点B1到平面A1DC的距离为h,则
∵AC=BC,D为AB的中点,
∴CD⊥AB,
∵三棱柱ABC-A1B1C1中,AC⊥BC,AB⊥BB1,D为棱AB的中点,AC=BC=BB1=2,
∴A1D=
,CD=
,A1C=2
,
∴由勾股定理可得CD⊥A1D,
∵AB∩A1D=D,
∴CD⊥平面A1B,
由VB1-A1DC=VC-A1B1D可得
•
•2
•2•
=
•
•
•
•h,
∴h=
,
∴直线A1B1与平面A1DC的所成角的正弦值为
=
.

∵D是AB中点,∴DE∥BC1,
又∵DE?面CA1D,BC1?面CA1D,
∴BC1∥面CA1D;
(Ⅱ)设点B1到平面A1DC的距离为h,则
∵AC=BC,D为AB的中点,
∴CD⊥AB,
∵三棱柱ABC-A1B1C1中,AC⊥BC,AB⊥BB1,D为棱AB的中点,AC=BC=BB1=2,
∴A1D=
5 |
3 |
2 |
∴由勾股定理可得CD⊥A1D,
∵AB∩A1D=D,
∴CD⊥平面A1B,
由VB1-A1DC=VC-A1B1D可得
1 |
3 |
1 |
2 |
2 |
3 |
1 |
3 |
1 |
2 |
5 |
3 |
∴h=
4
| ||
5 |
∴直线A1B1与平面A1DC的所成角的正弦值为
| ||||
2
|
2
| ||
5 |
点评:本题考查棱柱的结构特征,考查线面平行,考查线面角,正确运用线面平行的判定,求出点B1到平面A1DC的距离是关键.

练习册系列答案
相关题目

A、3:2 | B、7:5 | C、8:5 | D、9:5 |