题目内容

某高校在2012年自主招生考试成绩中随机抽取100名学生的笔试成绩,按成绩分组:第1组[75,80),第2组[80,85),第3组[85,90),第4组[90,95),第5组[95,100]得到的频率分布直方图如图所示.

(1)分别求第3,4,5组的频率;

(2) 若该校决定在笔试成绩较高的第3,4,5组中用分层抽样抽取6名学生进入第二轮面试。

(ⅰ) 已知学生甲和学生乙的成绩均在第三组,求学生甲和学生乙恰有一人进入第二轮面试的概率;

 (ⅱ) 学校决定在这已抽取到的6名学生中随机抽取2名学生接受考官L的面试,设第4组中有名学生被考官L面试,求的分布列和数学期望.

 

 

 

【答案】

(1)  第三组的频率为0.065=0.3; 第四组的频率为0.045=0.2;

第五组的频率为0.025=0.1.                           ……………………3分

(2)(ⅰ)设“学生甲和学生乙恰有一人进入第二轮面试”为事件A,第三组应有3人进入面试

则:  P(A)=                                ……………………6分

(ⅱ)第四组应有2人进入面试,则随机变量可能的取值为0,1,2.        …………7分

,则随机变量的分布列为:

0

1

2

P

                                                     ……………………10分

【解析】略

 

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网