题目内容

(2010•抚州模拟)在矩形ABCD中,已知AB=4,BC=3,将该矩形沿对角线AC折成直二面角D-AC-B,则四面体ABCD的外接球的体积为
125π
6
125π
6
分析:矩形ABCD中,由AB=4,BC=3,DB=AC=5,球心一定在过O且垂直于△ABC的直线上,也在过O且垂直于△DAC的直线上,这两条直线只有一个交点O 因此球半径R=
AC
2
=2.5
,由此能求出四面体ABCD的外接球的体积.
解答:解:矩形ABCD中,
∵AB=4,BC=3,
∴DB=AC=5,
设DB交AC与O,则O是△ABC和△DAC的外心,
球心一定在过O且垂直于△ABC的直线上,
也在过O且垂直于△DAC的直线上,这两条直线只有一个交点O
因此球半径R=
AC
2
=2.5

四面体ABCD的外接球的体积:
V=
4
3
×π×(2.5)3=
125π
6

故答案为:
125π
6
点评:本题考查四面体ABCD的外接球的体积的计算,是基础题.解题时要认真审题,仔细解答,注意合理地进行等价转化.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网