题目内容
在长为1的线段上任取两点,则这两点之间的距离小于的概率为 .
【答案】分析:本题考查的知识点是几何概型的意义,关键是要找出表示两点之间的距离小于的图形的面积,在线段上任取两个点对应的图形的面积,然后将其代入几何概型公式进行求解.
解答:解:以线段为左段点为原点,
以线段的方程为数轴的正方向,
在线段上任两点,不妨令它们坐标为分别为a,b
则:0≤a≤1,0≤b≤1,则(a,b)表示的区域如图中正方形所示
若两点之间的距离小于,
则|a-b|,即,
它表示的区域如图中阴影部分所示,
故长为1的线段上任取两点,
则这两点之间的距离小于的概率P===.
故答案为:.
点评:几何概型的概率估算公式中的“几何度量”,可以为线段长度、面积、体积等,而且这个“几何度量”只与“大小”有关,而与形状和位置无关.解决的步骤均为:求出满足条件A的基本事件对应的“几何度量”N(A),再求出总的基本事件对应的“几何度量”N,最后根据P=求解.
解答:解:以线段为左段点为原点,
以线段的方程为数轴的正方向,
在线段上任两点,不妨令它们坐标为分别为a,b
则:0≤a≤1,0≤b≤1,则(a,b)表示的区域如图中正方形所示
若两点之间的距离小于,
则|a-b|,即,
它表示的区域如图中阴影部分所示,
故长为1的线段上任取两点,
则这两点之间的距离小于的概率P===.
故答案为:.
点评:几何概型的概率估算公式中的“几何度量”,可以为线段长度、面积、体积等,而且这个“几何度量”只与“大小”有关,而与形状和位置无关.解决的步骤均为:求出满足条件A的基本事件对应的“几何度量”N(A),再求出总的基本事件对应的“几何度量”N,最后根据P=求解.
练习册系列答案
相关题目
在长为1的线段上任取两点,则这两点之间的距离小于
的概率为( )
1 |
2 |
A、
| ||
B、
| ||
C、
| ||
D、
|