题目内容
已知函数,,的零点分别为,则( )
A. | B. | C. | D. |
D
解析试题分析:令,, 分别得,,,则分别为函数的图象与函数,,的图象交点的横坐标,在同一平面直角坐标系下作出它们的图象,易得,,,故选.
考点:函数图象、零点的概念.
定义在上的可导函数满足:且,则不等式的解集为( )
A. | B. | C. | D. |
定义在R上的偶函数满足且在上是减函数,又是锐角三角形的两个内角,则( )
A. | B. |
C. | D. |
函数的定义域为,其图像上任一点都位于椭圆:上,下列判断①函数一定是偶函数;②函数可能既不是偶函数,也不是奇函数;③函数可能是奇函数;④函数如果是偶函数,则值域是;⑤函数值域是,则一定是奇函数.其中正确的命题个数有( )个
A.1 | B.2 | C.3 | D.4 |
若直角坐标平面内的两不同点、满足条件:①、都在函数的图像上;②、关于原点对称,则称点对是函数的一对“友好点对”(注:点对与看作同一对“友好点对”).已知函数=,则此函数的“友好点对”有( )对.
A.0 | B.1 | C.2 | D.3 |
下图揭示了一个由区间到实数集上的对应过程:区间内的任意实数与数轴上的线段(不包括端点)上的点一一对应(图一),将线段围成一个圆,使两端恰好重合(图二),再将这个圆放在平面直角坐标系中,使其圆心在轴上,点的坐标为(图三).图三中直线与轴交于点,由此得到一个函数,则下列命题中正确的序号是 ( )
;
是偶函数;
在其定义域上是增函数;
的图像关于点对称.
A.(1)(3)(4) | B.(1)(2)(3) |
C.(1)(2)(4) | D.(1)(2)(3)(4). |
设为平面直角坐标系中的点集,从中的任意一点作轴、轴的垂线,垂足分别为,,记点的横坐标的最大值与最小值之差为,点的纵坐标的最大值与最小值之差为.如果是边长为1的正方形,那么的取值范围是( )
A. | B. | C. | D. |
(2014·长沙模拟)某公司在甲、乙两地销售一种品牌车,利润(单位:万元)分别为L1=5.06x-0.15x2和L2=2x,其中x为销售量(单位:辆).若该公司在这两地共销售15辆车,则能获得的最大利润为( )
A.45.606万元 | B.45.6万元 |
C.45.56万元 | D.45.51万元 |
函数的定义域为( )
A.(0,1) | B.[0,1) | C.(0,1] | D.[0,1] |