题目内容

(2012•辽宁)设变量x,y满足
x-y≤10
0≤x+y≤20
0≤y≤15
,则2x+3y的最大值为(  )
分析:先画出满足约束条件 的平面区域,结合几何意义,然后求出目标函数z=2x+3y取最大值时对应的最优解点的坐标,代入目标函数即可求出答案.
解答:解:满足约束条件 
x-y≤10
0≤x+y≤20
0≤y≤15.
的平面区域如下图所示:
令z=2x+3y可得y=-
2
3
x+
z
3
,则
z
3
为直线2x+3y-z=0在y轴上的截距,截距越大,z越大
作直线l:2x+3y=0
把直线向上平移可得过点D时2x+3y最大,
y=15
x+y=20
可得x=5,y=15,此时z=55
故选D
点评:本题考查的知识点是简单线性规划,其中画出满足约束条件的平面区域,找出目标函数的最优解点的坐标是解答本题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网