题目内容
设数列{an}的首项a1=1,其前n项和Sn满足:3tSn-(2t+3)Sn-1=3t(t>0,n=2,3,…).(Ⅰ)求证:数列{an}为等比数列;
(Ⅱ)记{an}的公比为f(t),作数列{bn},使b1=1,bn=f(
1 | bn-1 |
分析:(Ⅰ)由S1=a1=1,S2=1+a2,得3t(1+a2)-(2t+3)=3t,a2=
=
,又3tSn-(2t+3)Sn-1=3t,3tSn-1-(2t+3)Sn-2=3t(n=3,4,)两式相减,得:3tan-(2t+3)an-1=0,由此能够证明数列{an}为等比数列.
(Ⅱ)由f(t)=
=
+
,得bn=f(
)=
+bn-1,所以bn=
,由此能求出(b1-b3)b2+(b3-b5)b4+…+(b2n-1-b2n+1)b2n之和.
2t+3 |
3t |
a2 |
a1 |
(Ⅱ)由f(t)=
2t+3 |
3t |
2 |
3 |
1 |
t |
1 |
bn-1 |
2 |
3 |
2n+1 |
3 |
解答:解:(Ⅰ)由S1=a1=1,S2=1+a2,得3t(1+a2)-(2t+3)=3t,∴a2=
=
又3tSn-(2t+3)Sn-1=3t,3tSn-1-(2t+3)Sn-2=3t(n=3,4,)两式相减,
得:3tan-(2t+3)an-1=0,
∴
=
(n=3,4,)
综上,数列{an}为首项为1,公比为
的等比数列
(Ⅱ)由f(t)=
=
+
,得bn=f(
)=
+bn-1,
所以{bn}是首项为1,,公差为
的等差数列,bn=
b1b2-b2b3+b3b4-b4b5+…+b2n-1b2n-b2nb2n+1=(b1-b3)b2+(b3-b5)b4+…+(b2n-1-b2n+1)b2n=-
(b2+b4+…+b2n)=-
•
(
+
)=-
(2n2+3n)
2t+3 |
3t |
a2 |
a1 |
又3tSn-(2t+3)Sn-1=3t,3tSn-1-(2t+3)Sn-2=3t(n=3,4,)两式相减,
得:3tan-(2t+3)an-1=0,
∴
an |
an-1 |
2t+3 |
3t |
综上,数列{an}为首项为1,公比为
2t+3 |
3t |
(Ⅱ)由f(t)=
2t+3 |
3t |
2 |
3 |
1 |
t |
1 |
bn-1 |
2 |
3 |
所以{bn}是首项为1,,公差为
2 |
3 |
2n+1 |
3 |
4 |
3 |
4 |
3 |
n |
2 |
5 |
3 |
4n+1 |
3 |
4 |
9 |
点评:第(Ⅰ)题考查等比数列的证明方法,证明过程中要注意迭代法的合理运用;第(Ⅱ)题考查数列前n项和的计算,解题时要注意合理地进行等价转化.
练习册系列答案
相关题目