题目内容

已知点

   (I)当点P在x轴上移动时,求动点M的轨迹方程;

   (II)设动点M的轨迹为C,如果过定点的直线与曲线C相交不同的两点S、R,求证:曲线C在S、R两点处的切线的交点在一条定直线上。

解:(I)设

                                                     

   

    ,                                                                                    

   

                                                    

   

点M的轨迹方程为                                                

   (II)解法一:设

则直线SR的方程为:

                                                             

  ①                            

∴抛物线上S、R处的切线方程为:

    ②                                

    ③                              

联立②③,并解之得代入①得                                    

故切线的交点在定直线                                 

解法二:当过点A的直线斜率不存在时与题意不符。设直线SR的方程为

代入抛物线方程得                                 

由韦达定理                                                      

又过S,R点的切线方程分别是:

                                                   

代入                                                         

消去k,得

故切线的交点在定直线

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网