题目内容

如图,在棱长为1的正方体ABCD-A′B′C′D′中,AP=BQ=b(0<b<1),截面PQEF∥A′D,截面PQGH∥AD′,
(Ⅰ)证明:平面PQEF和平面PQGH互相垂直;
(Ⅱ)证明:截面PQEF和截面PQGH面积之和是定值,并求出这个值;
(Ⅲ)若D′E与平面PQEF所成的角为45°,求D′E 与平面PQGH所成角的正弦值。
(Ⅰ)证明:在正方体中,
又由已知可得
 所以
所以PH⊥平面PQEF,
所以平面PQEF和平面PQGH互相垂直.
(Ⅱ)证明:由(Ⅰ)知
又截面PQEF和截面PQGH都是矩形,且PQ=1,
所以截面PQEF和截面PQGH面积之和是
,是定值.

(Ⅲ)解:连结BC′交EQ于点M,
因为
所以平面和平面PQGH互相平行,
因此D′E与平面PQGH所成角与D′E与平面ABC′D′所成角相等,
与(Ⅰ)同理可证EQ⊥平面PQGH,
可知EM⊥平面ABC′D′,
因此EM与D′E的比值就是所求的正弦值.
设AD′交PF于点N,连结EN,由FD=1-b知

因为AD′⊥平面PQEF,又已知D′E与平面PQEF成45°角,
所以

解得,可知E为BC中点,所以EM=

故D′E与平面PQCH所成角的正弦值为

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网