题目内容

两条相交直线l、m都在平面α内且都不在平面β内.命题甲:l和m中至少有一条与β相交,命题乙:平面α与β相交,则甲是乙的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.非充分非必要条件
若l和m中至少有一条与β相交,不妨设l∩β=A,
则由于l?α,∴A∈α.而A∈β,
∴α与β相交.
反之,若α∩β=a,如果l和m都不与β相交,由于它们都不在平面β内,
∴lβ且mβ.∴la且ma,进而得到lm,
与已知l、m是相交直线矛盾.
因此l和m中至少有一条与β相交.
综上所述,命题甲是命题乙的充要条件
故选C
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网