题目内容

(2012•泉州模拟)圆心在曲线y=
3
x
 (x>0)
上,且与直线3x+4y+3=0相切的面积最小的圆的方程为(  )
分析:设圆心为(a,
3
a
),a>0,圆心到直线的最短距离为:
|3a+4×
3
a
+3|
9+16
=
1
5
|3a+
12
a
+3|=r,|3a+
12
a
+3|=5r,由a>0,知3a+
12
a
+3=5r,欲求面积最小的圆的方程,即求r最小时a和r的值,由此能求出面积最小的圆的方程.
解答:解:设圆心为(a,
3
a
),a>0,
圆心到直线的最短距离为:
|3a+4×
3
a
+3|
9+16
=
1
5
|3a+
12
a
+3|=r,(圆半径)
∴|3a+
12
a
+3|=5r,
∵a>0,∴3a+
12
a
+3=5r,
欲求面积最小的圆的方程,即求r最小时a和r的值,
∵5r=3a+
12
a
+3≥2
3a•
12
a
+3=15,
∴r≥3,当3a=
12
a
,即a=2时,取等号,
∴面积最小的圆的半径r=3,圆心为(2,
3
2

所以面积最小的圆的方程为:(x-2)2+(y-
3
2
2=9.
故选A.
点评:本题考查圆的标准方程的求法,考查点到直线的距离公式和圆的性质的应用,解题时要认真审题,仔细解答,注意均值定理的灵活运用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网