题目内容

设椭圆C1的离心率为
7
15
,焦点在x轴上且长轴长为30.若曲线C2上的点到椭圆C1的两个焦点的距离的差的绝对值等于10,则曲线C2的标准方程为(  )
A、
x2
24
-
y2
25
=1
B、
x2
25
-
y2
24
=1
C、
x2
15
-
y2
7
=1
D、
x2
25
+
y2
24
=1
分析:先根据题意可推断出椭圆方程中的长半轴,进而根据离心率求得焦半距,根据曲线C2上的点到椭圆C1的两个焦点的距离的差的绝对值等于10,推断出其轨迹是双曲线且半焦距为7,实轴为10,进而求得虚轴的长,则双曲线的方程可得.
解答:解:根据题意可知椭圆方程中的a=15,
c
a
=
7
15

∴c=7
根据双曲线的定义可知曲线C2为双曲线,其中半焦距为7,实轴长为10
∴虚轴长为2
49-25
=4
6

∴双曲线方程为
x2
25
-
y2
24
=1

故选B.
点评:本题主要考查了双曲线的定义和简单性质,双曲线的标准方程和椭圆的简单性质.考查了学生对圆锥曲线基础知识的综合运用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网