题目内容
等比数列{an}的公比为q,第8项是第2项与第5项的等差中项.(1)求公比q;
(2)若{an}的前n项和为Sn,判断S3,S9,S6是否成等差数列,并说明理由.
分析:(1)本题已知等比数列的公比为q,第8项是第2项与第5项的等差中项,故直接建立起关于公比的方程,通过解方程求公比即可.
(2)用首项与公比表示出S3,S9,S6,直接验证三者是否符合等差数列的性质即可.
(2)用首项与公比表示出S3,S9,S6,直接验证三者是否符合等差数列的性质即可.
解答:解:(1)由题可知,2a8=a2+a5,
即2a1q7=a1q+a1q4,
由于a1q≠0,化简得2q6=1+q3,即2q6-q3-1=0,
解得q3=1或q3=-
.所以q=1或q=-
.
(2)当q=1时,不能构成等差数列,当当q=-
即q3=-
时,三都可以构成等差数列,证明如下:
当q=1时,S3=3a1,S9=9a1,S6=6a1.
易知S3,S9,S6不能构成等差数列.
当q=-
即q3=-
时,S3=
=
(1+
)=
•
,S9=
=
[1-(-
)3]=
•
,
S6=
=
[1-(-
)2]=
•
.
验证知S3+S6=2S9,所以S3,S9,S6能构成等差数列.
即2a1q7=a1q+a1q4,
由于a1q≠0,化简得2q6=1+q3,即2q6-q3-1=0,
解得q3=1或q3=-
1 |
2 |
| |||
2 |
(2)当q=1时,不能构成等差数列,当当q=-
| |||
2 |
1 |
2 |
当q=1时,S3=3a1,S9=9a1,S6=6a1.
易知S3,S9,S6不能构成等差数列.
当q=-
| |||
2 |
1 |
2 |
a1(1-q3) |
1-q |
a1 |
1-q |
1 |
2 |
3 |
2 |
a1 |
1-q |
a1(1-q9) |
1-q |
a1 |
1-q |
1 |
2 |
9 |
8 |
a1 |
1-q |
S6=
a1(1-q6) |
1-q |
a1 |
1-q |
1 |
2 |
3 |
4 |
a1 |
1-q |
验证知S3+S6=2S9,所以S3,S9,S6能构成等差数列.
点评:本题考查等比数列的通项公式以及其前n项和公式以及等差数列的性质,属于数列知识基本运用题,基础题型,解答本题要注意式的灵活变形尤其是因式分解的技巧.
练习册系列答案
相关题目