题目内容
(08年江苏卷) 若,
且
(1)求对所有实数成立的充要条件(用表示)
(2)设为两实数,且若
求证:在区间上的单调增区间的长度和为(闭区间的长度定义为)。
【解析】本小题考查充要条件、指数函数与绝对值、不等式的综合运用。
(1)由的定义可知,(对所有实数)等价于
(对所有实数)这又等价于,即
对所有实数均成立. (*)
由于的最大值为,
故(*)等价于,即,这就是所求的充分必要条件
(2)分两种情形讨论
(i)当时,由(1)知(对所有实数)
则由及易知,
再由的单调性可知,
函数在区间上的单调增区间的长度
为(参见示意图1)
(ii)时,不妨设,则,于是
当时,有,从而;
当时,有
从而 ;
当时,,及,由方程
解得图象交点的横坐标为
⑴
显然,
这表明在与之间。由⑴易知
综上可知,在区间上, (参见示意图2)
故由函数及的单调性可知,在区间上的单调增区间的长度之和为,由于,即,得
⑵
故由⑴、⑵得
综合(i)(ii)可知,在区间上的单调增区间的长度和为。
练习册系列答案
相关题目