题目内容
椭圆x2 |
12 |
y2 |
3 |
分析:由线段PF1的中点M在y轴的正半轴上,知MO是△PF1F2的中位线,由此能求出点P的坐标.
解答:解:∵线段PF1的中点M在y轴的正半轴上,
∴MO是△PF1F2的中位线,
∵MO⊥x轴,
∴PF2⊥x轴,
∴|PF2| =
=
.
∴P(3,
).
故答案为:(3,
).
∴MO是△PF1F2的中位线,
∵MO⊥x轴,
∴PF2⊥x轴,
∴|PF2| =
3 | ||
|
| ||
2 |
∴P(3,
| ||
2 |
故答案为:(3,
| ||
2 |
点评:本题考查椭圆的简单性质和应用,解题时要认真审题,注意公式的合理选用.
练习册系列答案
相关题目
直线 y=x+1与椭圆
+
=1相交于A、B两点,则|AB|=( )
x2 |
12 |
y2 |
3 |
A、
| ||||
B、
| ||||
C、
| ||||
D、
|