题目内容

设F1,F2分别为双曲线
x2
a2
-
y2
b2
=1
(a>0,b>0)的左右焦点,若在双曲线的右支上存在一点P满足:①△PF1F2是以PF1为底边的等腰三角形;②直线PF1与圆x2+y2=
1
4
a2
相切,则此双曲线的离心率为______.
设PF1与圆相切于点M,过F2做F2H垂直于PF1于H,则H为PF1的中点,
所以|F1M|=
1
4
|PF1|,
因为△PF1F2是以PF1为底边的等腰三角形,
所以|PF2|=|F1F2|=2c,再由椭圆的定义可得|PF1 |=2a-|PF2|=2a-2c,
又因为在直角△F1MO中,|F1M|2=|F1O|2-
1
4
a2=c2-
1
4
a2
所以c2-
1
4
a2=
1
16
(2a-2c)2
所以2a2-2ac-3c2=0,
所以3e2+2e-2=0,
因为e>1,所以e=
7
+1
3

故答案为:
7
+1
3
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网