题目内容
求下列双曲线的标准方程:(1)过点(3,-1),渐近线方程是y=±3x;
(2)与椭圆有相同的焦点,且离心率为.
【答案】分析:(1)根据题意,双曲线的渐近线方程是y=±3x,可设双曲线方程为 9x2-y2=λ(λ≠0),又由双曲线过点(3,-1),将点P的坐标代入可得λ的值,进而可得答案.
(2)由椭圆的性质,可得椭圆 的焦点坐标,由双曲线的离心率可设双曲线方程为为 y2-x2=a2(a>0),则可得a的值,进而可得双曲线方程.
解答:解:根据题意,双曲线的渐近线方程是y=±3x,
设双曲线方程为 9x2-y2=λ(λ≠0),
∵双曲线过点(3,-1),
∴9×9-1=λ,即λ=80.
∴所求双曲线方程为 ;
(2)∵椭圆 的焦点坐标为(0,4)和(0,-4),
根据双曲线的离心率为.则可设双曲线方程为 y2-x2=a2(a>0),
∵c=4,即 =4,
∴a=2.
故所求双曲线方程为 .
点评:本题考查双曲线的标准方程的求法,考查双曲线的标准方程以及椭圆的简单几何性质,注意区分并记忆椭圆、双曲线的几何性质及标准方程的形式.
(2)由椭圆的性质,可得椭圆 的焦点坐标,由双曲线的离心率可设双曲线方程为为 y2-x2=a2(a>0),则可得a的值,进而可得双曲线方程.
解答:解:根据题意,双曲线的渐近线方程是y=±3x,
设双曲线方程为 9x2-y2=λ(λ≠0),
∵双曲线过点(3,-1),
∴9×9-1=λ,即λ=80.
∴所求双曲线方程为 ;
(2)∵椭圆 的焦点坐标为(0,4)和(0,-4),
根据双曲线的离心率为.则可设双曲线方程为 y2-x2=a2(a>0),
∵c=4,即 =4,
∴a=2.
故所求双曲线方程为 .
点评:本题考查双曲线的标准方程的求法,考查双曲线的标准方程以及椭圆的简单几何性质,注意区分并记忆椭圆、双曲线的几何性质及标准方程的形式.
练习册系列答案
相关题目