题目内容

如图,正△ABC的中线AF与中位线DE相交于G,已知△A′ED是△AED绕DE旋转过程中的一个图形,下列说法中,错误的是(  )
分析:由斜线的射影定理可判断A正确;由异面直线所成的角的概念可判断B不正确;由三棱锥的体积计算公式,可判断C正确;由面面垂直的判定定理,可判断D正确;
解答:解::∵A′D=A′E,∴DE⊥A′G,∵△ABC是正三角形,∴DE⊥AG,又A′G∩AG=G,∴DE⊥平面A′GF,从而平面ABC⊥平面A′AF,且两平面的交线为AF,∴A'在平面ABC上的射影在线段AF上,故A正确;
∵E、F为线段AC、BC的中点,∴EF∥AB,∴∠A′EF就是异面直线A′E与BD所成的角,当(A'E)2+EF2=(A'F)2时,直线A'E与BD垂直,故B不正确;
∵三棱锥A′-FED的底面面积S△FED的面积为定值,由(1)知,A′到AF的距离即为此三棱锥的高,故当平面ADE⊥平面DEF时,三棱锥的高最大为A′C,从而三棱锥体积最大,故C正确
由A知,平面A'GF一定过平面BCED的垂线,∴恒有平面A'GF⊥平面BCED,故D正确;
故选 B
点评:本题平面图形的旋转为载体,综合考查线面、面面垂直的判定定理、性质定理的运用,考查空间线线、线面的位置关系及所成的角的概念,考查空间想象能力,属中档题
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网