题目内容
(本小题满分12分)
如图,在棱长为1的正方体中,AP=BQ=b(0<b<1),截面PQEF∥,截面PQGH∥.
(Ⅰ)证明:平面PQEF和平面PQGH互相垂直;
(Ⅱ)证明:截面PQEF和截面PQGH面积之和是定值,
并求出这个值;
(Ⅲ)若与平面PQEF所成的角为,求与平
面PQGH所成角的正弦值.
(Ⅰ)略,(Ⅱ)略,(Ⅲ)
解析:
解法一:
(Ⅰ)证明:在正方体中,,,又由已知可得
,,,
所以,,
所以平面.
所以平面和平面互相垂直.··················· 4分
(Ⅱ)证明:由(Ⅰ)知
,又截面PQEF和截面PQGH都是矩形,且PQ=1,所以截面PQEF和截面PQGH面积之和是
,是定值.························································ 8分
(III)解:连结BC′交EQ于点M.
因为,,
所以平面和平面PQGH互相平行,因此与平面PQGH所成角与与平面所成角相等.
与(Ⅰ)同理可证EQ⊥平面PQGH,可知EM⊥平面,因此EM与的比值就是所求的正弦值.
设交PF于点N,连结EN,由知
.
因为⊥平面PQEF,又已知与平面PQEF成角,
所以,即,
解得,可知E为BC中点.
所以EM=,又,
故与平面PQCH所成角的正弦值为.······································· 12分
解法二:
以D为原点,射线DA,DC,DD′分别为x,y,z轴的正半轴建立如图的空间直角坐标系D-xyz由已知得,故
,,,,
,,,
,,.
(Ⅰ)证明:在所建立的坐标系中,可得
,
,
.
因为,所以是平面PQEF的法向量.
因为,所以是平面PQGH的法向量.
因为,所以,
所以平面PQEF和平面PQGH互相垂直.······················································· 4分
(Ⅱ)证明:因为,所以,又,所以PQEF为矩形,同理PQGH为矩形.
在所建立的坐标系中可求得,,
所以,又,
所以截面PQEF和截面PQGH面积之和为,是定值.···································· 8分
(Ⅲ)解:由已知得与成角,又可得
,
即,解得.
所以,又,所以与平面PQGH所成角的正弦值为
.·························································· 12分