题目内容

(2012•江苏)在平面直角坐标系xOy中,圆C的方程为x2+y2-8x+15=0,若直线y=kx-2上至少存在一点,使得以该点为圆心,1为半径的圆与圆C有公共点,则k的最大值是
4
3
4
3
分析:由于圆C的方程为(x-4)2+y2=1,由题意可知,只需(x-4)2+y2=4与直线y=kx-2有公共点即可.
解答:解:∵圆C的方程为x2+y2-8x+15=0,整理得:(x-4)2+y2=1,即圆C是以(4,0)为圆心,1为半径的圆;
又直线y=kx-2上至少存在一点,使得以该点为圆心,1为半径的圆与圆C有公共点,
∴只需圆C:(x-4)2+y2=4与直线y=kx-2有公共点即可.
设圆心C(4,0)到直线y=kx-2的距离为d,
则d=
|4k-2|
1+k2
≤2,即3k2≤4k,
∴0≤k≤
4
3

∴k的最大值是
4
3

故答案为:
4
3
点评:本题考查直线与圆的位置关系,将条件转化为“(x-4)2+y2=4与直线y=kx-2有公共点”是关键,考查学生灵活解决问题的能力,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网